Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UBC-led team uncovers faintest stars ever seen in ancient star cluster

An international team of astronomers led by UBC professor Harvey Richer has uncovered the faintest stars ever seen in any globular star cluster, bringing scientists closer to revealing the formation time of one of the earliest generations of stars in the Universe.

Using NASA’s Hubble Space Telescope, the team took hundreds of high-resolution photos and compared the images pixel-by-pixel to identify the dimmest stars in the globular star cluster NGC 6397.

“The light from these faint stars is so dim that it is equivalent to that produced by a birthday candle on the Moon, as seen from Earth,” says Richer, lead investigator of the project, which was chosen over several thousand other proposals to gain almost five days access to Hubble.

The team surveyed two distinct stellar populations -- red dwarfs and white dwarfs -- in NGC 6397. Located in the southern constellation Ara, approximately 8,500 light-years away, NGC 6397 is the second closest globular star cluster to Earth.

At approximately eight per cent the mass of the Sun, the lowest mass red dwarfs are the least massive stars in the Universe still capable of burning hydrogen in their cores and supporting stable nuclear reactions.

White dwarfs are the burnt out remnants of more massive stars that died long ago. By measuring the temperatures of white dwarfs -- much like checking the temperature of smoldering coals in a campfire to estimate how long ago it was burning -- astronomers are able to determine the star’s age. This information provides important clues to the age of the globular cluster, which formed in the early Universe.

Analysing this relic population of white dwarfs is also the only way to calculate the original number of high-mass stars in the cluster.

“These stars, which died long ago, were among the first to have formed in the Universe,” says Richer, the world’s leading expert in using white dwarfs as a tool for dating globular clusters. “Pinning down their age narrows down the age range of the Universe.”

NB: Detailed results will be published in the Aug. 18 edition of the journal Science. For an advance copy of the paper, contact Natasha Pinol, AAAS / Science at 202.326.7088 or

Prof. Richer will present the team’s findings at an Aug. 17 press conference during the General Assembly of the International Astronomical Union (IAU) in Prague. For more information, visit

Electronic images are available at

High-resolution photos of Prof. Richer and star cluster NGC 6397 is available at

Biography: Harvey B. Richer
Professor Harvey Richer was born in Montreal, Quebec. He studied at McGill University and obtained his doctorate in physics and astronomy from the University of Rochester.

Richer has been at the University of British Columbia since the early 1970s. He has received various awards and distinctions including: Canada-U.S. Fulbright Scholar (2005), Canada Council for the Arts Killam Fellowship (2001-03), and the Gemini Scientist for Canada (2000-03).

His research is largely focused on stellar astronomy and on what resolved systems of stars can tell us about dark matter, the age of the Universe, the dynamical evolution of stellar systems, and the formation of galaxies. To investigate these diverse subjects, he observes a wide range of objects, including nearby stars, open and globular star clusters, and the resolved components of our neighbouring galaxies.

To accomplish his research goals, he uses a variety of telescopes, particularly the Twin Gemini Telescopes, the Canada-France-Hawaii Telescope and the Hubble Space Telescope.

Randy Schmidt | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>