Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UBC-led team uncovers faintest stars ever seen in ancient star cluster

21.08.2006
An international team of astronomers led by UBC professor Harvey Richer has uncovered the faintest stars ever seen in any globular star cluster, bringing scientists closer to revealing the formation time of one of the earliest generations of stars in the Universe.

Using NASA’s Hubble Space Telescope, the team took hundreds of high-resolution photos and compared the images pixel-by-pixel to identify the dimmest stars in the globular star cluster NGC 6397.

“The light from these faint stars is so dim that it is equivalent to that produced by a birthday candle on the Moon, as seen from Earth,” says Richer, lead investigator of the project, which was chosen over several thousand other proposals to gain almost five days access to Hubble.

The team surveyed two distinct stellar populations -- red dwarfs and white dwarfs -- in NGC 6397. Located in the southern constellation Ara, approximately 8,500 light-years away, NGC 6397 is the second closest globular star cluster to Earth.

At approximately eight per cent the mass of the Sun, the lowest mass red dwarfs are the least massive stars in the Universe still capable of burning hydrogen in their cores and supporting stable nuclear reactions.

White dwarfs are the burnt out remnants of more massive stars that died long ago. By measuring the temperatures of white dwarfs -- much like checking the temperature of smoldering coals in a campfire to estimate how long ago it was burning -- astronomers are able to determine the star’s age. This information provides important clues to the age of the globular cluster, which formed in the early Universe.

Analysing this relic population of white dwarfs is also the only way to calculate the original number of high-mass stars in the cluster.

“These stars, which died long ago, were among the first to have formed in the Universe,” says Richer, the world’s leading expert in using white dwarfs as a tool for dating globular clusters. “Pinning down their age narrows down the age range of the Universe.”

NB: Detailed results will be published in the Aug. 18 edition of the journal Science. For an advance copy of the paper, contact Natasha Pinol, AAAS / Science at 202.326.7088 or npinol@aaas.org.

Prof. Richer will present the team’s findings at an Aug. 17 press conference during the General Assembly of the International Astronomical Union (IAU) in Prague. For more information, visit http://www.astronomy2006.com.

Electronic images are available at http://hubblesite.org/news/2006/37/.

High-resolution photos of Prof. Richer and star cluster NGC 6397 is available at http://www.publicaffairs.ubc.ca/download/.

Biography: Harvey B. Richer
Professor Harvey Richer was born in Montreal, Quebec. He studied at McGill University and obtained his doctorate in physics and astronomy from the University of Rochester.

Richer has been at the University of British Columbia since the early 1970s. He has received various awards and distinctions including: Canada-U.S. Fulbright Scholar (2005), Canada Council for the Arts Killam Fellowship (2001-03), and the Gemini Scientist for Canada (2000-03).

His research is largely focused on stellar astronomy and on what resolved systems of stars can tell us about dark matter, the age of the Universe, the dynamical evolution of stellar systems, and the formation of galaxies. To investigate these diverse subjects, he observes a wide range of objects, including nearby stars, open and globular star clusters, and the resolved components of our neighbouring galaxies.

To accomplish his research goals, he uses a variety of telescopes, particularly the Twin Gemini Telescopes, the Canada-France-Hawaii Telescope and the Hubble Space Telescope.

Randy Schmidt | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>