Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double vortex at Venus South Pole unveiled!

27.06.2006
ESA’s Venus Express data undoubtedly confirm for the first time the presence of a huge 'double-eye' atmospheric vortex at the planet's south pole. This striking result comes from analysis of the data gathered by the spacecraft during the first orbit around the planet.

On 11 April this year, Venus Express was captured into a first elongated orbit around Venus, which lasted 9 days, and ranged between 350 000 and 400 kilometres from Venus' surface. This orbit represented for the Venus Express scientists a unique opportunity to observe the planet from large distances. This made it possible to obtain first clues about the Venusian atmospheric dynamics on a global scale, before the spacecraft got closer and started observing the planet in greater detail.


These six different infrared images (in false colour) were taken by the Ultraviolet/Visible/Near-Infrared spectrometer (VIRTIS) on board ESA’s Venus Express spacecraft between 12 and 19 April 2006, during the first orbit, or ‘capture orbit’, around the planet. The images (taken at 5 microns) were obtained at six different time slots and different distances from Venus (top left: 12 April, from 210 000 kilometres; top centre: 13 April, from 280 000 kilometres; top right: 14 April, from 315 000 kilometres; bottom left:16 April, from 315 000 kilometres; bottom centre: 17 April, from 270 000 kilometres; bottom right: 19 April, from 190 000 kilometres), while the spacecraft moved along a long ellipse around the planet. The planet’s globe, imaged at different angles, was mapped onto an electronic mock-up of Venus, so to have the South Pole always plotted at the centre of each single image. Around the South pole it is possible to see a peculiar double-eye vortex structure, never clearly seen by any other mission to Venus before. The sequence shows the rotation and variation of the double vortex over time. It is also possible to see the rotation of the ‘terminator’, the line separating the day side – visible in yellow - from the night side. The images also show the presence of a collar of cold air around the vortex structure (dark blue), possibly due to the recycling of cold air downwards. Credits: ESA/VIRTIS/INAF-IASF/Obs. de Paris-LESIA

During this first orbit – called the 'capture orbit' – some of the Venus Express instruments were used to perform the first observations at different distances from Venus, for a few hours per time on six different slots between 12 and 19 April 2006.

Amazing infrared, visible and ultraviolet images of the Venusian globe already reveal several atmospheric features of great interest. The most striking of these is a huge, double-eye atmospheric vortex over the south pole, not dissimilar from the equivalent structure present at the north pole – the only one previously studied in some detail.

Only glimpses of the stormy atmospheric behaviour at the south pole were obtained by previous missions (Pioneer Venus and Mariner 10), but such a double-eye structure was never clearly seen before now.

High velocity winds are known to spin westwards around the planet, and to take only four days to complete a rotation. This 'super-rotation', combined with the natural recycling of hot air in the atmosphere, would induce the formation of a vortex structure over each pole. But why two vortexes?

"We still know very little about the mechanisms by which the super-rotation and the polar vortexes are linked," said Håkan Svedhem, ESA’s Venus Express Project Scientist. "Also, we are still not able to explain why the global atmospheric circulation of the planet results in a double and not single vortex formation at the poles. However the mission is just at the beginning and it's doing fine; we expect this and many other long-standing mysteries to be addressed and possibly solved by Venus Express," he added. Atmospheric vortexes are very complex structures that are very difficult to model, even on Earth.

Thanks to these first pictures, it has also been possible to observe the presence of a collar of cold air around the vortex structure, possibly due to the recycling of cold air downwards.

Views of the southern hemisphere of Venus in visible and ultraviolet light show interesting atmospheric stripe-like structures. Spotted for the first time by Mariner 10 in the 1970s, they may be due to the presence of dust and aerosols in the atmosphere, but their true nature is still unexplained. "Venus Express has the tools to investigate these structures in detail," added Svedhem. "Studies have already begun to dig into the properties of the complex wind fields on Venus, to understand the atmospheric dynamics on local and global scales."

Venus Express also made use for the first time ever from orbit of the so-called 'infrared windows' present in the atmosphere of Venus – if observed at certain wavelengths, it is possible to detect thermal radiation leaking from the deepest atmospheric layers, revealing what lies beneath the dense cloud curtain situated at about 60 kilometres altitude.

The first infrared images making use of the ‘windows’ show complex cloud structures, all revealed by the thermal radiation coming up from different atmospheric depths. In the colour scheme shown in the image at right, the brighter the colour (that is, the more radiation comes up from the lower layers), the less cloudy is the observed area.

During capture orbit, preliminary data about the chemical composition of the atmosphere were also retrieved. Venus’ atmosphere is mainly composed of carbon dioxide (CO2). The incoming solar radiation dissociates this molecule into carbon monoxide (CO) and oxygen in the upper atmospheric layers. In fact, Venus Express has already spotted the presence of an oxygen (O2) airglow high in the atmosphere. However, Venus Express has revealed the presence of carbon monoxide as low as the cloud-layer top.

Scientists will continue the data analysis and retrieval to understand the phenomenon, which is very important to clarify the complex chemical processes and cycles at work in the atmosphere of Venus under the influence of solar radiation.

Since 7 May 2006 Venus Express has been circling the planet in its final 24-hour orbit, ranging between 66 000 and 250 kilometres from Venus - therefore at much closer distances with respect to the capture orbit. Venus Express scientists are now analysing the new data coming in, which already show what seems to be exciting new features. “We have never seen Venus in such great detail so far. We are eagerly waiting for these new data to be available,” concluded Svedhem.

Håkan Svedhem | alfa
Further information:
http://www.esa.int/SPECIALS/Venus_Express/SEMYGQEFWOE_0.html

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>