Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vega's second stage motor roars to life

27.06.2006
ESA’s Vega small satellite launch vehicle has made a new step toward its maiden flight, late next year, with the success of the first firing test on its second stage motor, the Zefiro 23.

The static firing was performed today, 26 June, at the Italian Ministry of Defence test centre in Salto di Quirra, Sardinia. The 7.5m tall, 2m diameter motor, featuring a carbon epoxy filament wound casing, delivered more than 100 metric tons of thrust (1,070 kN), burning some 24 metric tons of solid propellant in 75 seconds.

Numerous data were gathered during the test and are now under analysis to improve technical knowledge of the motor’s behaviour and refine the launcher’s future performance. Also tested during the firing were various subsystems, including a thrust vector control system that will steer the motor’s nozzle to provide flight control. After this success, the motor will proceed with its critical design review, at which stage its technical characteristics will be finalised.

Built by Avio in Colleferro, near Rome, the Zefiro 23 motor will be the basis for the second stage of ESA’s Vega launcher. The first firing test with the third stage motor – the Zefiro 9 – was performed in December 2005. Conducted on behalf of ESA’s Vega development programme, these two firing tests followed three static firings of the Zefiro 16 demonstrator in 1998, 1999 and 2000. Both the Zefiro 23 and Zefiro 9 will undergo an additional ground firing test each to complete their development and qualification.

“The Zefiro 23 is one of the largest composite casing solid rocket motors ever test fired in Western Europe,” noted Antonio Fabrizi, ESA’s director of launchers, “but it will be dwarfed shortly, when we will fire Vega’s first stage motor, the P80, with its 88 tons of propellant, in Kourou, French Guiana, in November.”

“With this new motor firing, the Vega programme has passed another milestone in good time,” continued Fabrizi, “and I praise our industrial team as well as our partner the Italian Space Agency, for this achievement. Now let’s proceed and make sure we will be able to meet our schedule for the next phases.”

The first Vega flight is currently set for the end of 2007 from Europe’s Spaceport in French Guiana.

Under development since 1998 with the support of seven ESA Member States (Italy, France, Belgium, Switzerland, Spain, the Netherlands and Sweden), ESA’s Vega small satellite launcher is an all-solid three-stage vehicle with a liquid-fuelled injection module. ELV SpA, a joint venture of Avio and ASI, the Italian Space Agency, was delegated the responsibility for Vega development. CNES, the French space agency, holds similar responsibility for the P80 first stage.

Vega is designed to loft single or multiple payloads to orbits up to 1,500 km in altitude. Its baseline payload capability is about 1,500 kg to a circular 700-km high sun-synchronous orbit but it can also loft satellites from 300 kg to more than 2 metric tonnes, as well as piggyback microsatellites. This range of performance covers the needs for multiple applications in the fields of remote sensing, environmental monitoring, Earth science, space science, fundamental science and research and technology for future space applications and systems. Once qualified, Vega will be marketed and operated by Arianespace, as a complement to Ariane 5 and Soyuz, and will address the small satellite launch market.

ESA media relations office | alfa
Further information:
http://www.esa.int/SPECIALS/Launchers_Home/SEMH4REFWOE_0.html

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>