Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic fields created using nanotechnology could make computers up to 500 times faster

22.06.2006
Magnetic fields created using nanotechnology could make computers up to 500 times more powerful if new research is successful.

The University of Bath is to lead an international £555,000 three-year project to develop a system which could cut out the need for wiring to carry electric currents in silicon chips.

Computers double in power every 18 months or so as scientists and engineers develop ways to make silicon chips smaller. But in the next few years they will hit a limit imposed by the need to use electric wiring, which weakens signals sent between computer components at high speed.

The new research project could produce a way of carrying electric signal without the need for wiring. Wi fi internet systems and mobile phones use wireless technology now, but the electronics that create and use wireless signals are too large to be used within individual microchips successfully.

The research project, which involves four universities in the UK and a university and research centre in Belgium and France, will look at ways of producing microwave energy on a small scale by firing electrons into magnetic fields produced in semi-conductors that are only a few atoms wide and are layered with magnets.

The process, called inverse electron spin resonance, uses the magnetic field to deflect electrons and to modify their magnetic direction. This creates oscillations of the electrons which makes them produce microwave energy. This can then be used to broadcast electric signals in free space without the weakening caused by wires.

The possibility of using the special semi-conductors in this way was first pointed out by Dr Alain Nogaret, of the University of Bath’s Department of Physics, in an important scientific paper in 2005 (Electrically Induced Raman Emission from Planar Spin Oscillator, in Physical Review Letters). The latest research is the first attempt to turn theory into practice.

“The work could be very important for the creation of faster, more powerful computers,” said Dr Nogaret.

“We can only go so far in getting more power from silicon chips by shrinking their components – conventional technology is already reaching the physical limits of materials it uses, such as copper wiring, and its evolution will come to a halt.

“But if this research is successful, it could make computers with wireless semi-conductors a possibility within five or ten years of the end of the project. Then computers could be made anything from 200 to 500 times quicker and still be the same size.

“This research may also improve the accuracy and speed of medical diagnostic by gathering data from health monitoring sensors. The microwave emitters are small enough to be integrated on portable biological sensors which feed information out on faulty biological processes.

“The research is not only practical, but beautiful in its theoretical simplicity, which is one of the big attractions for the physicists working on it.”

The project is the only one which aims to create wireless emitters and receivers that fit on semi-conductor wafers, where individual devices are one ten thousandth of a millimetre in size.

It will also allow the creation of integrated circuits which will still continue to work properly even if some of its connections fail – the system can be programmed to reroute itself so that it can continue working. At present a failure in a connecting wire can put an integrated circuit out of action.

In the manufacture of today’s integrated circuits there is no room for error, and so manufacturers must spend large amounts of money to build dust-free clean rooms. The advantage of the new more flexible system is that only 95 per cent or so of the electronic components would need to work for the chip to work properly. Such chips would be many times cheaper to produce.

Dr Nogaret is working with colleagues Professor Simon Bending and Professor John Davies in the University’s £2 million laboratory dedicated to nanotechnology.

The University receives £463,000 for the project, which begins in October. The University of Nottingham receives £65,000, and the University of Leeds £27,000, all from the Engineering and Physical Sciences Research Council. The University of St Andrews in Scotland, and the University of Antwerp, Belgium, will also take part, as will the Centre National de la Recherche Scientifique in Grenoble, France.

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk/news/articles/research/magentic-computers220606.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>