Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Build An Ultrasound Version Of The Laser

08.06.2006


Researchers at the University of Illinois at Urbana-Champaign and at the University of Missouri at Rolla have built an ultrasound analogue of the laser.

Called a uaser (pronounced WAY-zer) - for ultrasound amplification by stimulated emission of radiation, the instrument produces ultrasonic waves that are coherent and of one frequency, and could be used to study laser dynamics and detect subtle changes, such as phase changes, in modern materials.

"We have demonstrated that the essential nature of a laser can be mimicked by classical mechanics - not quantum mechanics - in sound instead of light," said Richard Weaver, a professor of theoretical and applied mechanics at Illinois.



To make a uaser, Weaver, Illinois research associate Oleg Lobkis and Missouri physics professor Alexey Yamilov begin by mounting a number of piezoelectric auto-oscillators to a block of aluminum, which serves as an elastic, acoustic body. When an external acoustic source is applied to the body, the oscillators synchronize to its tone. Like fireflies trapped in a bottle, the oscillators synchronize to the frequency of the source.

In the absence of an external source, the tiny ultrasonic transducers become locked to one another by virtue of their mutual access to the same acoustic system.

"The phases must be correct also," Weaver said. "By carefully designing the transducers, we can assure the correct phases and produce stimulated emission. As a result, the power output scales with the square of the number of oscillators."

The uaser more closely resembles a "random laser" than it does a conventional, highly directional laser, Weaver said. "In principle, however, there is no reason why we shouldn’t be able to design a uaser to generate a narrow, highly directional beam."

Optical lasers are useful because of their coherent emission, high intensity and rapid switching. These features are of little value in acoustics, where coherence is the rule and not the exception, intensity is limited by available power, and maximum switching speeds are limited by moderate frequencies.

Nevertheless, uasers may be useful. With their longer wavelengths and more convenient frequencies, uasers could prove useful for modeling and studying laser dynamics. They could also serve as highly sensitive scientific tools for measuring the elastic properties and phase changes of modern materials, such as thin films or high-temperature superconductors.

"Uasers can produce an ultrasonic version of acoustical feedback - an ultrasonic howl similar to the squeal created when a microphone is placed too close to a speaker," Weaver said. "By slowly changing the temperature while monitoring the ultrasonic feedback frequency, we could precisely measure the phase change in various materials."

Weaver will describe the uaser and present his team’s latest experiments at the annual meeting of the Acoustical Society of America, to be held at the Rhode Island Convention Center in Providence, June 5-9.

The work was funded in part by the National Science Foundation.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

nachricht Integrated lasers on different surfaces
19.09.2017 | The Agency for Science, Technology and Research (A*STAR)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>