Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A sea otter-shaped rubble pile in space

02.06.2006


Hayabusa mission offers an intimate portrait of asteroid Itokawa


This news release is also available in Japanese.


True to its name, the Japanese spacecraft Hayabusa, which means "falcon" in Japanese, hovered over the near-Earth asteroid Itokawa last fall, taking up-close measurements and photographs. Then it swooped down for a brief landing and the first-ever sample attempt on an asteroid.

The first peer-reviewed set of scientific results from this mission appears in the 2 June 2006 issue of the journal Science, published by AAAS, the nonprofit science society. These findings will help researchers understand the structure and composition of the "near-Earth asteroids" that periodically whiz past our planet.



"Asteroids are relics from our early solar system and provide critical information on its early evolution and some represent the early building blocks of Earth. Some in Earth-crossing orbits may pose significant future threats," said Brooks Hanson, Science’s deputy managing editor, physical sciences.

"The Hayabusa results appearing in Science give us an intimate look at a near-Earth asteroid and provide information on its makeup and relation to collected meteorites. The Hayabusa misson also opens up a new frontier of space research in which we investigate other asteroids," he said.

Asteroid Itokawa, named after Japanese rocket scientist Hideo Itokawa, was chosen as Hayabusa’s "prey" in part because it is one of the most common types of rocky near-Earth asteroids, the so-called "S-type" asteroids. The relatively tiny asteroid is only 500 meters long.

"The results obtained for Itokawa make a good benchmark for this type of asteroid. We could say that we have seen real images of the most common type of asteroid in the near-Earth region," said lead Science author Akira Fujiwara of the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA).

Some of the photographs taken by Hayabusa’s camera even show the spacecraft’s shadow, revealing how close the spacecraft came to the asteroid during its hover.

In a special issue of journal devoted to the Hayabusa mission, Fujiwara and his colleagues report that asteroid Itokawa has two parts, a smaller "head" and larger "body," giving it the shape of a sea otter, and appears to consist of rubble.

Asteroid structure has been a puzzle for scientists thus far. In theory, because of the pummeling that asteroids receive by other objects, they should be clusters of fragments that have re-accreted. Previously studied asteroids, however, generally appear to be lumps of solid rock.

"Although it is still unknown why these other asteroids do not show a rubble pile structure, at least now we have the first example of a rubble pile asteroid," said Fujiwara.

The rubble is very loosely packed and porous, just barely held together by the asteroid’s own gravity. If an object collided with Itokawa, it would probably be like a rock landing in a bucket of sand. The signs of impacts with small space rocks get erased as the rubble shifts after the impact, so there are very few craters on Itokawa.

The asteroid’s head-and-body structure might have arisen as the rubble shifted in response to impacts. Or, the head and body may once have been separate rubble piles that gradually merged.

Fujiwara and his colleagues report that, unlike previously explored asteroids, Itokawa’s surface has patches of both rough, boulder-strewn terrain and "seas" of uniformly sized, finer gravel particles, which appear velvety-smooth in the photographs from the mission. Hayabusa’s touchdown took place on one such smooth patch called "Muses Sea." (This is a play on words; Hayabusa was originally called MUSES-C).

Because it was designed to take samples from its destination and return them to Earth, the Hayabusa mission has also offered important engineering lessons. The spacecraft used an electronic ion propulsion system, whose efficiency should be critical to future missions in deep space, and autonomous navigation technology for its delicate approach and landing. Hayabusa also attempted a "touch and go" sampling effort intended to bring the first asteroid material back to Earth, but it may not have been successful.

The spacecraft, now low on fuel, is slowly gliding back to Earth, where it may drop its cargo capsule into the Australian desert in 2010.

The mission encountered several major technical difficulties, which Erik Asphaug of the University of California, Santa Cruz notes in a "Perspective" article that accompanies the research.

"Yet despite these heartbreaking setbacks, Hayabusa has been a stunning success for asteroid science and deep space concept testing, as reported in an exciting set of mission reports in this issue. These are the culmination of heroic efforts to make things go right in the face of multiple setbacks. Failures are not uncommon in deep space, and in this case ingenuity and perseverance paid off in remarkable ways," Asphaug writes.

Natasha Pinol | EurekAlert!
Further information:
http://www.sciencemag.org
http://www.aaas.org
http://www.eurekalert.org

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>