Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A sea otter-shaped rubble pile in space

02.06.2006


Hayabusa mission offers an intimate portrait of asteroid Itokawa


This news release is also available in Japanese.


True to its name, the Japanese spacecraft Hayabusa, which means "falcon" in Japanese, hovered over the near-Earth asteroid Itokawa last fall, taking up-close measurements and photographs. Then it swooped down for a brief landing and the first-ever sample attempt on an asteroid.

The first peer-reviewed set of scientific results from this mission appears in the 2 June 2006 issue of the journal Science, published by AAAS, the nonprofit science society. These findings will help researchers understand the structure and composition of the "near-Earth asteroids" that periodically whiz past our planet.



"Asteroids are relics from our early solar system and provide critical information on its early evolution and some represent the early building blocks of Earth. Some in Earth-crossing orbits may pose significant future threats," said Brooks Hanson, Science’s deputy managing editor, physical sciences.

"The Hayabusa results appearing in Science give us an intimate look at a near-Earth asteroid and provide information on its makeup and relation to collected meteorites. The Hayabusa misson also opens up a new frontier of space research in which we investigate other asteroids," he said.

Asteroid Itokawa, named after Japanese rocket scientist Hideo Itokawa, was chosen as Hayabusa’s "prey" in part because it is one of the most common types of rocky near-Earth asteroids, the so-called "S-type" asteroids. The relatively tiny asteroid is only 500 meters long.

"The results obtained for Itokawa make a good benchmark for this type of asteroid. We could say that we have seen real images of the most common type of asteroid in the near-Earth region," said lead Science author Akira Fujiwara of the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA).

Some of the photographs taken by Hayabusa’s camera even show the spacecraft’s shadow, revealing how close the spacecraft came to the asteroid during its hover.

In a special issue of journal devoted to the Hayabusa mission, Fujiwara and his colleagues report that asteroid Itokawa has two parts, a smaller "head" and larger "body," giving it the shape of a sea otter, and appears to consist of rubble.

Asteroid structure has been a puzzle for scientists thus far. In theory, because of the pummeling that asteroids receive by other objects, they should be clusters of fragments that have re-accreted. Previously studied asteroids, however, generally appear to be lumps of solid rock.

"Although it is still unknown why these other asteroids do not show a rubble pile structure, at least now we have the first example of a rubble pile asteroid," said Fujiwara.

The rubble is very loosely packed and porous, just barely held together by the asteroid’s own gravity. If an object collided with Itokawa, it would probably be like a rock landing in a bucket of sand. The signs of impacts with small space rocks get erased as the rubble shifts after the impact, so there are very few craters on Itokawa.

The asteroid’s head-and-body structure might have arisen as the rubble shifted in response to impacts. Or, the head and body may once have been separate rubble piles that gradually merged.

Fujiwara and his colleagues report that, unlike previously explored asteroids, Itokawa’s surface has patches of both rough, boulder-strewn terrain and "seas" of uniformly sized, finer gravel particles, which appear velvety-smooth in the photographs from the mission. Hayabusa’s touchdown took place on one such smooth patch called "Muses Sea." (This is a play on words; Hayabusa was originally called MUSES-C).

Because it was designed to take samples from its destination and return them to Earth, the Hayabusa mission has also offered important engineering lessons. The spacecraft used an electronic ion propulsion system, whose efficiency should be critical to future missions in deep space, and autonomous navigation technology for its delicate approach and landing. Hayabusa also attempted a "touch and go" sampling effort intended to bring the first asteroid material back to Earth, but it may not have been successful.

The spacecraft, now low on fuel, is slowly gliding back to Earth, where it may drop its cargo capsule into the Australian desert in 2010.

The mission encountered several major technical difficulties, which Erik Asphaug of the University of California, Santa Cruz notes in a "Perspective" article that accompanies the research.

"Yet despite these heartbreaking setbacks, Hayabusa has been a stunning success for asteroid science and deep space concept testing, as reported in an exciting set of mission reports in this issue. These are the culmination of heroic efforts to make things go right in the face of multiple setbacks. Failures are not uncommon in deep space, and in this case ingenuity and perseverance paid off in remarkable ways," Asphaug writes.

Natasha Pinol | EurekAlert!
Further information:
http://www.sciencemag.org
http://www.aaas.org
http://www.eurekalert.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>