Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The search for new applications for laser light beams

30.05.2006


Light can blind or distort colours, or confuse one with chiaroscuros. But it can have greater usefulness if its properties, characteristics, how it is created, etcetera are better understood.



At the Department of Applied Physics at the University of the Basque Country School of Engineering they are using laser light in studies to look for new applications.

There is more than one kind of laser beam but, basically, the process of its creation is the same:


Initially, photons– light particles – are needed and, to this end, electricity or another source of light is used, for example, a flash. The photons thus created reach a state that is known as ‘active species’ their electrons being in an excited state. The photons join with the ‘active species’ electrons, thus boosting their energy levels. This situation causes the electrons to jump to a higher energy level; they are said to be in an excited state.

But the electrons cannot last very long in this state and spontaneously return to their fundamental level, thereby liberating the accumulated energy in the form of photons. These released photons have greater energy and longer wavelength than the initial photons – these liberated photons are those that create a laser light beam.

There exists the possibility that the energy accumulated by the electrons is not released in the form of photons but as heat. This happens with glass when photons from the sun’s rays hit it. The electrons in the glass are excited but, on returning to their fundamental level, they release energy in the form of heat and not as light.

The ‘active species’ photons are released in all directions, but some of these can be trapped by two mirrors judiciously juxtapositioned. A to-and-fro movement is initiated with the photons bouncing back and forth from one mirror to the other. Moreover, while they are trapped, they continue influencing other electrons, thus creating ever more high-energy photons, i.e. evermore laser light.

The released ‘active species’ photons tend to line up and group together so they have even greater energy level. When a certain energy level is reached, a series of photons escapes through one of the mirrors – this is a laser light beam, continuous and pulsating.

The colour of the laser will fundamentally depend on the ‘active species’, given that each species liberates photons of a specific wavelength, creating green, red, yellow or invisible laser beams.

In the laboratory they are investigating active species and materials by subjecting them to laser.

Knowledge of the optical properties of materials can be used for an infinite number of applications. For example, in the Applied Physics laboratory they have created crystals of a special composition that could be used in medicine. Once the size of the crystals is reduced, they can be introduced into cells as markers, in order to discriminate between different types of cells or even between components of a cell. The laser beam falling on the crystals will illuminate them thus signalling their exact position or they will initiate specific cell processes which would result in the death of cancer cells, for example. All this calls for, needless to say, precise knowledge of lasers and, above all, of the crystals to be used.

It is not science fiction, but science fact and in there amongst other, very real bodies, is the School of Engineering.

Irati Kortabitarte | BasqueResearch
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=975&hizk=I

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>