Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The search for new applications for laser light beams


Light can blind or distort colours, or confuse one with chiaroscuros. But it can have greater usefulness if its properties, characteristics, how it is created, etcetera are better understood.

At the Department of Applied Physics at the University of the Basque Country School of Engineering they are using laser light in studies to look for new applications.

There is more than one kind of laser beam but, basically, the process of its creation is the same:

Initially, photons– light particles – are needed and, to this end, electricity or another source of light is used, for example, a flash. The photons thus created reach a state that is known as ‘active species’ their electrons being in an excited state. The photons join with the ‘active species’ electrons, thus boosting their energy levels. This situation causes the electrons to jump to a higher energy level; they are said to be in an excited state.

But the electrons cannot last very long in this state and spontaneously return to their fundamental level, thereby liberating the accumulated energy in the form of photons. These released photons have greater energy and longer wavelength than the initial photons – these liberated photons are those that create a laser light beam.

There exists the possibility that the energy accumulated by the electrons is not released in the form of photons but as heat. This happens with glass when photons from the sun’s rays hit it. The electrons in the glass are excited but, on returning to their fundamental level, they release energy in the form of heat and not as light.

The ‘active species’ photons are released in all directions, but some of these can be trapped by two mirrors judiciously juxtapositioned. A to-and-fro movement is initiated with the photons bouncing back and forth from one mirror to the other. Moreover, while they are trapped, they continue influencing other electrons, thus creating ever more high-energy photons, i.e. evermore laser light.

The released ‘active species’ photons tend to line up and group together so they have even greater energy level. When a certain energy level is reached, a series of photons escapes through one of the mirrors – this is a laser light beam, continuous and pulsating.

The colour of the laser will fundamentally depend on the ‘active species’, given that each species liberates photons of a specific wavelength, creating green, red, yellow or invisible laser beams.

In the laboratory they are investigating active species and materials by subjecting them to laser.

Knowledge of the optical properties of materials can be used for an infinite number of applications. For example, in the Applied Physics laboratory they have created crystals of a special composition that could be used in medicine. Once the size of the crystals is reduced, they can be introduced into cells as markers, in order to discriminate between different types of cells or even between components of a cell. The laser beam falling on the crystals will illuminate them thus signalling their exact position or they will initiate specific cell processes which would result in the death of cancer cells, for example. All this calls for, needless to say, precise knowledge of lasers and, above all, of the crystals to be used.

It is not science fiction, but science fact and in there amongst other, very real bodies, is the School of Engineering.

Irati Kortabitarte | BasqueResearch
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>