Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists Discover ‘Compact Jets’ From Neutron Star

24.05.2006


Compact jets that shoot matter into space in a continuous stream at near the speed of light have long been assumed to be a unique feature of black holes. But these odd features of the universe may be more common than once thought.


Artist concept shows jets of material
shooting out from the neutron star. NASA/JPL-Caltech/R. Hurt (SSC)



Astrophysicists using NASA’s Spitzer Space Telescope recently spotted one of these jets around a super-dense dead star, confirming for the first time that neutron stars as well as black holes can produce these fire-hose-like jets of matter. A paper detailing their surprising discovery appears in this week’s issue of the Astrophysical Journal Letters.

"For years, scientists suspected that something unique to black holes must be fueling the continuous compact jets because we only saw them coming from black hole systems,” said Simone Migliari, an astrophysicist at the University of California, San Diego’s Center for Astrophysics and Space Sciences and the lead author of the paper. “Now that Spitzer has revealed a steady jet coming from a neutron star in an X-ray binary system, we know that the jets must be fueled by something that both systems share.”


A neutron star X-ray binary system occurs when a normal star orbits a dead star that is so dense all of its atoms have collapsed into neutrons, hence the name “neutron star.” The normal star circles the neutron star the same way Earth orbits the Sun.

Migliari and his colleagues from four institutions in the U.S. and Europe used Spitzer’s super sensitive infrared eyes to study a jet in one such system called 4U 0614+091. In this system, the neutron star is more than 14 times the mass of its orbiting stellar companion.

As the smaller star travels around its dead partner, the neutron star’s intense gravity picks up material leaving the smaller star’s atmosphere and creates a disk around itself. The disk of matter, or accretion disk, circles the neutron star similar to the way rings circle Saturn. According to Migliari, accretion disks and intense gravitational fields are characteristics that black holes and neutron stars in X-ray binaries share.

“Our data show that the presence of an accretion disk and an intense gravitational field may be all we need to form and fuel a compact jet,” he said.

Typically, radio telescopes are the tool of choice for observing compact jets around black holes. At radio wavelengths, astronomers can isolate the jet from everything else in the system. However, because the compact jets of a neutron star can be more than 10 times fainter than those of a black hole, using a radio telescope to observe a neutron star’s jet would take many hours of observations.

With Spitzer’s supersensitive infrared eyes, Migliari’s team detected 4U 0614+091’s faint jet in minutes. The infrared telescope also helped astronomers infer details about the jet’s geometry. System 4U 0614+091 is located approximately 10,000 light years away in the constellation Orion.

Other co-authors of the paper are John Tomsick of UCSD; Thomas Maccarone, Rob Fender and David Russell of the University of Southampton, UK; Elena Gallo of UC Santa Barbara; and Gijs Nelemans of the University of Nijmegen in the Netherlands.

NASA’s Jet Propulsion Laboratory manages the Spitzer Space Telescope and science operations for the mission are conducted at the Spitzer Science Center at the California Institute of Technology.

Media Contacts:
Kim McDonald, UCSD, (858) 534-7572
Whitney Clavin, NASA’s Jet Propulsion Laboratory, (818) 354-4673

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>