Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Prospects at the Large Hadron Collider

26.04.2006


Will scientists ever find the elusive Higgs particle, the last of the fundamental particles predicted by the Standard Model of particle physics and postulated to play a major role in how fundamental particles get their masses? Are there undiscovered particles “beyond” those described by the Standard Model? Experiments expected to begin next year at the Large Hadron Collider (LHC), a new particle accelerator at the European Center for Nuclear Research (CERN), will take up the search and explore other intriguing questions about matter in our universe.



Ketevi Assamagan, a physicist at the U.S. Department of Energy’s Brookhaven National Laboratory, has been helping to build and coordinate analysis tools for ATLAS, one of the LHC’s multipurpose detectors. He will give a talk on LHC preparations and the facility’s prospects for discovery at the April meeting of the American Physical Society in Dallas, Texas on Sunday, April 23 at 9:06 a.m. (Room Pegasus B, Hyatt Regency Hotel). Brookhaven Lab is the headquarters for the 33 U.S. institutions contributing to the ATLAS project. Worldwide, more than 2,000 scientists are collaborating on ATLAS.

“The Standard Model has been quite successful in explaining the known particles, their properties, and the main interactions of matter — but there are problems,” Assamagan says.


For example, the Standard Model assumes there is only one type of Higgs particle. With this restriction, computations aimed at correcting the mass of the Higgs diverge so that physicists cannot get a finite result they could measure. Another problem is the enormous energy gap between the scale of gravity (the Planck scale) and the scale of the electroweak force, which governs the Standard Model.

To resolve these problems, scientists have proposed alternative theories or extensions to the Standard Model. In addition to searching for the Higgs particle, the LHC — a 27-kilometer ring-shaped accelerator capable of colliding protons or heavy ions — will probe these theories by searching for the kinds of particles they predict.

One extension theory is known as the Minimal Supersymmetric Standard Model (MSSM). “Instead of having only one Higgs particle, you end up with five of them,” Assamagan says. And as in all versions of the theory of Supersymmetry, each of these particles — and each of the other particles of the Standard Model — has a yet-to-be-discovered companion supersymmetric partner. “The existence of supersymmetric particles would protect the Higgs mass against divergent radiative corrections,” Assamagan says.

“Since no one has ever detected a sypersymmetric particle, it would be a very significant finding if we see one or more at the LHC,” he adds. The prospects for such as discovery at the LHC are quite good, he suggests, because the LHC machine will have sufficient energy and collision rates to produce these particles.

The LHC will also explore the idea that “large extra dimensions” exist to bridge the energy gap between the electroweak and Planck scales, as well as other theories that suggest the supposed fundamental particles of the Standard Model are not fundamental at all, but instead are themselves composites — that is, composed of even smaller, more fundamental building blocks yet to be discovered. In addition to exploring these realms “beyond the Standard Model,” LHC experiments will also probe the mysterious missing mass and dark energy of the universe, investigate the reason for nature’s preference for matter over antimatter, and probe matter as it existed at the very beginning of time.

“The ATLAS detector is truly multipurpose, with many different systems for detecting a wide array of particles and reconstructing what happened in the interaction region,” Assamagan says, “so it is not bound to any particular discovery. We hope it is made well enough to discover whatever the case is — even if it is a complete surprise.”

First collisions at the LHC are expected to take place in the summer of 2007.

Brookhaven Lab’s role in this work is funded by the Office of High Energy Physics within the U.S. Department of Energy’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>