Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chaos = Order: WUSTL physicists make baffling discovery

06.04.2006


"Da police are not here to create disorder; dere here to preserve disorder." — Richard J. Daley, Chicago mayor, explaining to the media the role of the police during the riotous 1968 Democratic National Convention.



Police keep order. That’s why, for example, they issue tickets for "disturbing the peace." Thus the only logical conclusion to Mayor Daley’s famous quote above — other than dismissing it as the result of a tangled tongue — is sometimes disorder spawns order.

Sounds impossible, right?


Wrong.

According to a computational study conducted by a group of physicists at Washington University in St. Louis, one may create order by introducing disorder.

While working on their model — a network of interconnected pendulums, or "oscillators" — the researchers noticed that when driven by ordered forces the various pendulums behaved chaotically and swung out of sync like a group of intoxicated synchronized swimmers. This was unexpected — shouldn’t synchronized forces yield synchronized pendulums?

But then came the real surprise: When they introduced disorder — forces were applied at random to each oscillator — the system became ordered and synchronized.

"The thing that is counterintuitive is that when you introduce disorder into the system — when the [forces on the pendulums] act at random — the chaos that was present before disappears and there is order," said Sebastian F. Brandt, Washington University physics graduate student in Arts & Sciences and lead author of the study, which appeared in the January 2006 edition of Physical Review Letters.

Insights into other realms

The physicists’ research is not only hard to grasp for non-physicists, but puzzling for physicists, too. As supervisor Ralf Wessel, Ph.D., Washington University associate professor of physics said, "Every physicist who hears this is surprised."

Research on the role of disorder in complex systems is quite new and not well understood. Wessel hopes that one day its theoretical understanding will be better than it is today.

Nevertheless, the researchers believe the model could provide insights outside the realm of theoretical physics.

Neurons, for example, have been modeled as interconnected, or "coupled," oscillators because of the way they interact with one another. In the model, coupled oscillators can be imagined as being tethered to their nearest neighbor, thus influencing their movement. Neurons, on the other hand, may display repetitive electrical activity that can be influenced by the activity of neighboring neurons.

Though it’s a bit of a stretch, admits Babette K. Dellen, Ph.D., the study may help to solve previously unexplained observations. Dellen first studied the model system in a neurological context. She set the project aside and then Brandt joined the research group and became intrigued with the concept of disorder-induced synchronization and delved more deeply. Finally, the three put the paper together.

Dellen explains that neurons can exhibit synchronous activity in response to a stimulus. To this point, she said, nobody has come up with an adequate explanation. And Wessel said, "Maybe the details of the neurons are completely irrelevant. Maybe it is only a property of oscillators."

Oscillators like a child on a swing

A vital similarity between the model system and neurons is that they are both "nonlinear" — meaning that there is not a linear, or straight-ahead, correlation between the applied force and displacement. In other words, the oscillators in the model may be likened to a child on a swing. Within a small range, the child will move in constant proportion to how hard you push them — if you push twice as hard, they will go twice as far. But nearly all complex systems in nature, like the physicists’ model, are nonlinear. Once the child gets to a certain height, pushing twice as hard will not make the child go twice as far.

Neurons are composed of many elements and are typically nonlinear.

"When you hear your favorite music twice as loud you don’t double the pleasure," mused Brandt, explaining how one aspect of the brain — hearing — is nonlinear.

While other research has shown that disorder can create order, these studies often involved manipulating parameters within the systems such as changing pendulum length. The researchers say that their work is novel because it involves changing externally applied forces. Thus, they believe, their findings might have potential in the real world, where it would be more difficult to change parameters within the system — neurons, for example — but relatively simple to apply an external forcing.

"This is of course basic research," said Brandt. "But what you can learn from this is that complex systems ... sometimes behave in a very unexpected way, completely opposite to your intuition or expectation. It will be interesting to see if the mechanism that we have found can actually be put to some use."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>