Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists search for dark galaxies through the AGES

05.04.2006


First results from the Arecibo Galaxy Environment Survey (AGES) suggest the discovery of a new dark galaxy. The AGES survey, which started in January 2006, is the most sensitive, large-scale survey of neutral hydrogen to date. Neutral hydrogen is found in most galaxies and it is a key tool in the search for dark galaxies as it can be detected even when there are no stars or other radiation sources to “shine a light” on matter.



The new candidate dark galaxy is located near NGC1156, an apparently isolated, irregularly-shaped galaxy found at the edge of the Aries constellation. The first observations in the AGES programme identified a number of new galaxies. One newly discovered source is approximately 153 million light-years from Earth and appears to be 200,000 light-years across. There is no obvious optical counterpart to the massive object.

Robbie Auld, who is presenting the results at the RAS National Astronomy Meeting in Leicester on 6th April, said, “The new source showed up clearly in the AGES survey as it contains huge amounts of hydrogen gas but it was missed in all previous searches as it doesn’t appear to contain many bright stars. The interactions between hydrogen atoms in cosmic gas clouds are enough to stimulate light emission at the neutral hydrogen “fingerprint” wavelength of 21cm. In the first stage of the AGES campaign, we have used the Arecibo radio telescope to search at this wavelength, looking for galaxies that have remained hidden from astronomers in the past. We now need to follow up observations at other wavelengths and work out exactly how many stars this new galaxy may or may not contain.”


The AGES programme, which will last for four years, is led by Cardiff University’s Dr Jonathan Davies. In addition to the Arecibo radio telescope, AGES will use a network of ground-based and space-based telescopes to observe the sky in many different wavelengths. Among those used will be the UK Infrared Telescope in Hawaii, the GALEX ultraviolet space telescope, the Hubble Space Telescope.

The techniques used in AGES have already been used on a small scale and have led to the discovery of VIRGOHI21, the first galaxy to be detected with gas, large amounts of the mysterious dark matter but no visible stars. By discovering more objects like VIRGOHI21 scientist hope to answer one of the greatest cosmological questions: if, as theoreticians predict, matter in the Universe is mainly dark then where does is all reside? The AGES team hopes that the survey will reveal exactly how much matter is hidden in dark galaxies and determine whether current theories are correct.

Anita Heward | alfa
Further information:
http://www.naic.edu/~ages/a2048/first_results.html
http://www.ras.org.uk/index.php?option=com_content&task=view&id=969

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

How cheetahs stay fit and healthy

24.03.2017 | Life Sciences

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>