Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant filament structures give a rare insight into galaxy cluster evolution

05.04.2006


A new image of the centre of a cluster of galaxies has revealed massive filamentary structures that give a rare insight into the evolution of galaxy clusters.



“The star forming regions in the cluster that we’d observed previously were just the tip of the iceberg. We’ve now observed filaments of gas streaming out from these regions that are approximately 490 thousand light years across. The gaseous trails mark the path of galaxies travelling at high speed through the cluster. The origin of these unique features is still a matter for debate, but we think the combined action of tidal forces among galaxies in the cluster and of ram-pressure by the ambient medium caused the galaxies to fragment and blast out the ionized gas,” said Dr Luca Cortese, who is presenting the results at the Royal Astronomical Society’s National Astronomy Meeting on 5th April.

An international team, lead by Dr Cortese, studied the physical properties of a compact group that is falling towards the centre of a cluster of galaxies known as Abell1367 at a rate of 1700 km/s. The group, which was discovered in 2002, has the highest density of star forming objects ever observed in local clusters. It contains two giant galaxies, at least ten dwarf galaxies or extragalactic clouds of gas and over a billion solar masses of diffuse gas filaments.


Scientists believe that clusters of galaxies are formed from the accretion of compact groups like the one observed in Abell1367. Formation of clusters of galaxies peaked 5 billion years ago. Now the rate is at least three times lower and it will slow dramatically due to the effects of the acceleration of the Universe. The Abell1367 group is particularly important as it is only 300 million light years from Earth – ‘local’ in terms of the Universe – and so the scientists can see the processes at work in unprecedented detail. Dr Cortese explains, “The physical processes seen here are typical of young clusters, found far away in space and a long time ago. To really understand what’s going on, we need a close up view. This is the first time we have found an example of a galaxy group mid-way through its transformation that is close enough for us to have a really good look at the structures surrounding the galaxies.”

The results suggest that at least part of the changes to the structure of cluster galaxies that took place in earlier epochs happened very differently to ones observed in today’s clusters. In today’s clusters of galaxies, the galaxies are travelling faster than in the infalling groups, which means that gravitational interactions between galaxies happen much faster.

The study was carried out using the Italian National Telescope Galileo in La Palma in April 2004 and February 2006.

The results of this study are accepted for publication on Astronomy and Astrophysics

Anita Heward | alfa
Further information:
http://goldmine.mib.infn.it/papers/preprocessing.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>