Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold atoms produce long-sought quantum mix

16.03.2006


Unbalanced superfluid could be akin to exotic matter found in Quark Star

Rice University physicist Randall Hulet will discuss breakthrough efforts to create a long-sought quantum superfluid at a press conference at 2:30 p.m. today at the American Physical Society’s 2006 March Meeting.

In January, Hulet’s laboratory reported in the journal Science the observation of an elusive quantum state – a superfluid of fermions with mismatched numbers of dance partners. Despite more than 40 years of theoretical musings about what would occur in such a case, the result -- a cluster of matched pairs surrounded by a cloud of would-be dance partners -- was largely unexpected, and it has opened the door to several intriguing new avenues of investigation.



Hulet will discuss published findings and ongoing investigations today in room 334 of the Baltimore Convention Center.

Rice’s experiments offer physicists a new window into two of the most intriguing and least understood phenomena in physics – superconductivity and superfluidity.

In the bizarre and rule-bound world of quantum physics, every tiny speck of matter has something called "spin" -- an intrinsic trait like eye color -- that cannot be changed and which dictates, very specifically, what other bits of matter the speck can share quantum space with. Because of their spins, fermions are the most antisocial of quantum particles. But when they do get together, fermion pairings enable such wondrous things as superconductivity and superfluidity.

Both phenomena result from a change in the phase of matter. Anyone who has seen ice melt has seen matter change phases, and when electrons, atoms and other specks of matter change quantum phases, they behave just as differently as do ice and water in a glass.

Superconducting and superfluid phases of matter occur in fermions only when quantum effects become dominant. Because thermodynamic forces are typically so powerful that they overwhelm quantum interactions -- like loud music overwhelms the whisper of someone nearby -- superconductivity and superfluidity usually only occur in extreme cold.

In the Rice experiments, when temperatures drop to within a few billionths of a degree of absolute zero, fermions with equal but opposite spin become attracted to one another and behave, in some respects, like one particle. Like a couple on the dance floor, they don’t technically share space, but they move in unison. In superconductors, these dancing pairs allow electrical current to flow through the material without any resistance at all, a property that engineers have long dreamed of harnessing to eliminate "leakage" in power cables, something that costs billions of dollars per year in the U.S. alone.

The superconducting and superfluid phases are analogous except that superconductivity happens with particles carrying an electrical charge and superfluidity occurs in electrically neutral particles. In superfluids, fermionic pairing leads to a complete absence of viscosity – like a wave rippling back and forth in a swimming pool without ever diminishing.

"Conventional theory tells us superconductivity or superfluidity occurs only in the presence of an equal number of spin-up and spin-down particles," said Hulet, the Fayez Sarofim Professor of Physics and Astronomy. "Physicists have speculated for almost 50 years about what would happen if this condition were not met.

"Because of the pristine and controlled nature of ultracold atoms, we’re able to offer definitive evidence of what happens with mismatched numbers of spin-up and spin-down particles."

Ultracold experiments at temperatures just a few billionths of a degree above absolute zero are Hulet’s specialty. It’s only been technically possible to chill atoms to these temperatures for the past 10 years, but in that time, this ability has proved remarkably useful for testing the predictions of quantum mechanics and for exploring the properties of what physicists call "many-body phenomena," including superconductivity and superfluidity.

Hulet’s team cooled a mixture of fermionic lithium-6 atoms to about 30-billionths of a degree above absolute zero. That’s far colder than any temperature in nature -- even in deepest interstellar space -- and it’s sufficient to quell virtually all thermodynamic interaction in the atoms, leaving them subject to superfluid quantum pairing.

Using radio waves, Hulet’s team can alter the ratio of spin-up and spin-down atoms in the cooled sample with great precision. They have found that the superfluid is able to tolerate an excess of up to 10 percent unpaired fermions with no detrimental effects.

"The gas behaves as if it is still perfectly paired, which is quite remarkable given the excess of spin-up atoms," Hulet said. "This was unexpected, and it could signal a new, exotic form of pairing that may also occur in unconventional superconductors or in the quark soup that’s predicted to exist at the heart of the densest neutron stars."

In the largest neutron stars -- known as "quark stars" -- a mass about five times greater than the sun is pressed into a space smaller than the island of Manhattan. Some physics theorists believe gravity is so strong at the heart of these stars that it creates something called "strange matter," a dense superfluid of up quarks, down quarks and strange quarks.

Hulet’s team has also found that increasing the ratio of spin-up to spin-down atoms eventually causes a phase change. When unpaired spin-up atoms rise above 10 percent of the total sample, the unpaired loners are suddenly expelled, leaving a core of superfluid pairs surrounded by a shell of excess spin-up atoms.

Ben Stein | EurekAlert!
Further information:
http://www.rice.edu
http://www.aip.org

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>