Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold atoms produce long-sought quantum mix

16.03.2006


Unbalanced superfluid could be akin to exotic matter found in Quark Star

Rice University physicist Randall Hulet will discuss breakthrough efforts to create a long-sought quantum superfluid at a press conference at 2:30 p.m. today at the American Physical Society’s 2006 March Meeting.

In January, Hulet’s laboratory reported in the journal Science the observation of an elusive quantum state – a superfluid of fermions with mismatched numbers of dance partners. Despite more than 40 years of theoretical musings about what would occur in such a case, the result -- a cluster of matched pairs surrounded by a cloud of would-be dance partners -- was largely unexpected, and it has opened the door to several intriguing new avenues of investigation.



Hulet will discuss published findings and ongoing investigations today in room 334 of the Baltimore Convention Center.

Rice’s experiments offer physicists a new window into two of the most intriguing and least understood phenomena in physics – superconductivity and superfluidity.

In the bizarre and rule-bound world of quantum physics, every tiny speck of matter has something called "spin" -- an intrinsic trait like eye color -- that cannot be changed and which dictates, very specifically, what other bits of matter the speck can share quantum space with. Because of their spins, fermions are the most antisocial of quantum particles. But when they do get together, fermion pairings enable such wondrous things as superconductivity and superfluidity.

Both phenomena result from a change in the phase of matter. Anyone who has seen ice melt has seen matter change phases, and when electrons, atoms and other specks of matter change quantum phases, they behave just as differently as do ice and water in a glass.

Superconducting and superfluid phases of matter occur in fermions only when quantum effects become dominant. Because thermodynamic forces are typically so powerful that they overwhelm quantum interactions -- like loud music overwhelms the whisper of someone nearby -- superconductivity and superfluidity usually only occur in extreme cold.

In the Rice experiments, when temperatures drop to within a few billionths of a degree of absolute zero, fermions with equal but opposite spin become attracted to one another and behave, in some respects, like one particle. Like a couple on the dance floor, they don’t technically share space, but they move in unison. In superconductors, these dancing pairs allow electrical current to flow through the material without any resistance at all, a property that engineers have long dreamed of harnessing to eliminate "leakage" in power cables, something that costs billions of dollars per year in the U.S. alone.

The superconducting and superfluid phases are analogous except that superconductivity happens with particles carrying an electrical charge and superfluidity occurs in electrically neutral particles. In superfluids, fermionic pairing leads to a complete absence of viscosity – like a wave rippling back and forth in a swimming pool without ever diminishing.

"Conventional theory tells us superconductivity or superfluidity occurs only in the presence of an equal number of spin-up and spin-down particles," said Hulet, the Fayez Sarofim Professor of Physics and Astronomy. "Physicists have speculated for almost 50 years about what would happen if this condition were not met.

"Because of the pristine and controlled nature of ultracold atoms, we’re able to offer definitive evidence of what happens with mismatched numbers of spin-up and spin-down particles."

Ultracold experiments at temperatures just a few billionths of a degree above absolute zero are Hulet’s specialty. It’s only been technically possible to chill atoms to these temperatures for the past 10 years, but in that time, this ability has proved remarkably useful for testing the predictions of quantum mechanics and for exploring the properties of what physicists call "many-body phenomena," including superconductivity and superfluidity.

Hulet’s team cooled a mixture of fermionic lithium-6 atoms to about 30-billionths of a degree above absolute zero. That’s far colder than any temperature in nature -- even in deepest interstellar space -- and it’s sufficient to quell virtually all thermodynamic interaction in the atoms, leaving them subject to superfluid quantum pairing.

Using radio waves, Hulet’s team can alter the ratio of spin-up and spin-down atoms in the cooled sample with great precision. They have found that the superfluid is able to tolerate an excess of up to 10 percent unpaired fermions with no detrimental effects.

"The gas behaves as if it is still perfectly paired, which is quite remarkable given the excess of spin-up atoms," Hulet said. "This was unexpected, and it could signal a new, exotic form of pairing that may also occur in unconventional superconductors or in the quark soup that’s predicted to exist at the heart of the densest neutron stars."

In the largest neutron stars -- known as "quark stars" -- a mass about five times greater than the sun is pressed into a space smaller than the island of Manhattan. Some physics theorists believe gravity is so strong at the heart of these stars that it creates something called "strange matter," a dense superfluid of up quarks, down quarks and strange quarks.

Hulet’s team has also found that increasing the ratio of spin-up to spin-down atoms eventually causes a phase change. When unpaired spin-up atoms rise above 10 percent of the total sample, the unpaired loners are suddenly expelled, leaving a core of superfluid pairs surrounded by a shell of excess spin-up atoms.

Ben Stein | EurekAlert!
Further information:
http://www.rice.edu
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>