Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold atoms produce long-sought quantum mix

16.03.2006


Unbalanced superfluid could be akin to exotic matter found in Quark Star

Rice University physicist Randall Hulet will discuss breakthrough efforts to create a long-sought quantum superfluid at a press conference at 2:30 p.m. today at the American Physical Society’s 2006 March Meeting.

In January, Hulet’s laboratory reported in the journal Science the observation of an elusive quantum state – a superfluid of fermions with mismatched numbers of dance partners. Despite more than 40 years of theoretical musings about what would occur in such a case, the result -- a cluster of matched pairs surrounded by a cloud of would-be dance partners -- was largely unexpected, and it has opened the door to several intriguing new avenues of investigation.



Hulet will discuss published findings and ongoing investigations today in room 334 of the Baltimore Convention Center.

Rice’s experiments offer physicists a new window into two of the most intriguing and least understood phenomena in physics – superconductivity and superfluidity.

In the bizarre and rule-bound world of quantum physics, every tiny speck of matter has something called "spin" -- an intrinsic trait like eye color -- that cannot be changed and which dictates, very specifically, what other bits of matter the speck can share quantum space with. Because of their spins, fermions are the most antisocial of quantum particles. But when they do get together, fermion pairings enable such wondrous things as superconductivity and superfluidity.

Both phenomena result from a change in the phase of matter. Anyone who has seen ice melt has seen matter change phases, and when electrons, atoms and other specks of matter change quantum phases, they behave just as differently as do ice and water in a glass.

Superconducting and superfluid phases of matter occur in fermions only when quantum effects become dominant. Because thermodynamic forces are typically so powerful that they overwhelm quantum interactions -- like loud music overwhelms the whisper of someone nearby -- superconductivity and superfluidity usually only occur in extreme cold.

In the Rice experiments, when temperatures drop to within a few billionths of a degree of absolute zero, fermions with equal but opposite spin become attracted to one another and behave, in some respects, like one particle. Like a couple on the dance floor, they don’t technically share space, but they move in unison. In superconductors, these dancing pairs allow electrical current to flow through the material without any resistance at all, a property that engineers have long dreamed of harnessing to eliminate "leakage" in power cables, something that costs billions of dollars per year in the U.S. alone.

The superconducting and superfluid phases are analogous except that superconductivity happens with particles carrying an electrical charge and superfluidity occurs in electrically neutral particles. In superfluids, fermionic pairing leads to a complete absence of viscosity – like a wave rippling back and forth in a swimming pool without ever diminishing.

"Conventional theory tells us superconductivity or superfluidity occurs only in the presence of an equal number of spin-up and spin-down particles," said Hulet, the Fayez Sarofim Professor of Physics and Astronomy. "Physicists have speculated for almost 50 years about what would happen if this condition were not met.

"Because of the pristine and controlled nature of ultracold atoms, we’re able to offer definitive evidence of what happens with mismatched numbers of spin-up and spin-down particles."

Ultracold experiments at temperatures just a few billionths of a degree above absolute zero are Hulet’s specialty. It’s only been technically possible to chill atoms to these temperatures for the past 10 years, but in that time, this ability has proved remarkably useful for testing the predictions of quantum mechanics and for exploring the properties of what physicists call "many-body phenomena," including superconductivity and superfluidity.

Hulet’s team cooled a mixture of fermionic lithium-6 atoms to about 30-billionths of a degree above absolute zero. That’s far colder than any temperature in nature -- even in deepest interstellar space -- and it’s sufficient to quell virtually all thermodynamic interaction in the atoms, leaving them subject to superfluid quantum pairing.

Using radio waves, Hulet’s team can alter the ratio of spin-up and spin-down atoms in the cooled sample with great precision. They have found that the superfluid is able to tolerate an excess of up to 10 percent unpaired fermions with no detrimental effects.

"The gas behaves as if it is still perfectly paired, which is quite remarkable given the excess of spin-up atoms," Hulet said. "This was unexpected, and it could signal a new, exotic form of pairing that may also occur in unconventional superconductors or in the quark soup that’s predicted to exist at the heart of the densest neutron stars."

In the largest neutron stars -- known as "quark stars" -- a mass about five times greater than the sun is pressed into a space smaller than the island of Manhattan. Some physics theorists believe gravity is so strong at the heart of these stars that it creates something called "strange matter," a dense superfluid of up quarks, down quarks and strange quarks.

Hulet’s team has also found that increasing the ratio of spin-up to spin-down atoms eventually causes a phase change. When unpaired spin-up atoms rise above 10 percent of the total sample, the unpaired loners are suddenly expelled, leaving a core of superfluid pairs surrounded by a shell of excess spin-up atoms.

Ben Stein | EurekAlert!
Further information:
http://www.rice.edu
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>