Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disks encircling hypergiant stars may spawn planets in inhospitable environment

10.02.2006


RIT astronomer uses NASA’s Spitzer Space Telescope to study massive stars


This illustration compares the size of a gargantuan star and its surrounding dusty disk (top) to that of our solar system.



The discovery of dusty disks--the building blocks of planets--around two of the most massive stars known suggests that planets might form and survive in surprisingly hostile environments.

The discovery was made through NASA’s Spitzer Space Telescope observations of two hypergiant stars in the Large Magellanic Cloud--the Milky Way’s nearest neighboring galaxy--by a team led by Joel Kastner, a professor at Rochester Institute of Technology’s Chester F. Carlson Center for Imaging Science. His team’s findings will appear in the Feb. 10 issue of Astrophysical Journal Letters.


So far, searches for planets outside the solar system have been restricted to sun-like stars. All of these stars are older, dimmer and cooler objects than hypergiants, which are extraordinarily large and luminous but shorter-lived by billions of years.

Kastner and his team used infrared spectra obtained by Spitzer to study a population of dying stars. They added a new direction to their project when Spitzer’s infrared spectrograph revealed unexpected information. Spitzer’s sensitive spectrometer, which breaks down infrared radiation into component wavelengths as a prism splits visible light into a rainbow, indicated that a third of the stars in the population thought to be in decline--including two massive and exceedingly luminous hypergiants--were actually younger stars in varying stages of development.

The curious spectra of these two hypergiants (R126 and R66)--with one star being 70 times bigger than the sun--led Kastner to reexamine the stars’ classifications as dying. The shape of the spectra, or the amount of light from different wavelengths, is characteristic of flattened disks of dust orbiting the stars.

The two stars’ similar spectra differ in detail, with one encircled by dust in crystalline form, the other by more shapeless, amorphous dust grains. This expands the range of known conditions under which complex dust grains and molecules can form and persist around stars, Kastner says.

Kastner describes the complex mixture of dust detected around the stars as the "tip of the iceberg," probably signaling that the disks of debris surrounding the stars are similar to the solar system’s Kuiper Belt, a vast, distant collection of comet- and even Pluto-like objects. "To explain the very strong infrared radiation we detected, the stars we observed would have to host especially large Kuiper belts," he says.

He adds: "If Kuiper belts are the smoking guns of planetary formation around stars, it seems that these stars, as massive as they are, may be forming planets."

Hypergiants are only a few million years old and have a relatively short lifespan as far as stars go, considering the billions of years it will take the sun to expire.

"These planetary systems, if they do form and exist, are short lived because these massive stars explode as supernovae," Kastner says. "So it’s amazing that the raw material for planets could be found in such a hostile environment."

Kastner’s study highlights only two of more than a dozen or so known examples of very massive stars in the Large Magellanic Cloud that are bright infrared sources. The next phase of the study will use new Spitzer spectra of the additional hypergiant stars to determine how many more are encircled by dusty disks and why only some of these disks contain crystalline dust grains.

"We’ve discovered a new class of object, and we need to use Spitzer to measure the infrared spectra of a lot more of these objects to learn how unique they really are," Kastner says.

Kastner’s team includes Catherine Buchanan from RIT and B. Sargent and W.J. Forrest from the University of Rochester.

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>