Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disks encircling hypergiant stars may spawn planets in inhospitable environment

10.02.2006


RIT astronomer uses NASA’s Spitzer Space Telescope to study massive stars


This illustration compares the size of a gargantuan star and its surrounding dusty disk (top) to that of our solar system.



The discovery of dusty disks--the building blocks of planets--around two of the most massive stars known suggests that planets might form and survive in surprisingly hostile environments.

The discovery was made through NASA’s Spitzer Space Telescope observations of two hypergiant stars in the Large Magellanic Cloud--the Milky Way’s nearest neighboring galaxy--by a team led by Joel Kastner, a professor at Rochester Institute of Technology’s Chester F. Carlson Center for Imaging Science. His team’s findings will appear in the Feb. 10 issue of Astrophysical Journal Letters.


So far, searches for planets outside the solar system have been restricted to sun-like stars. All of these stars are older, dimmer and cooler objects than hypergiants, which are extraordinarily large and luminous but shorter-lived by billions of years.

Kastner and his team used infrared spectra obtained by Spitzer to study a population of dying stars. They added a new direction to their project when Spitzer’s infrared spectrograph revealed unexpected information. Spitzer’s sensitive spectrometer, which breaks down infrared radiation into component wavelengths as a prism splits visible light into a rainbow, indicated that a third of the stars in the population thought to be in decline--including two massive and exceedingly luminous hypergiants--were actually younger stars in varying stages of development.

The curious spectra of these two hypergiants (R126 and R66)--with one star being 70 times bigger than the sun--led Kastner to reexamine the stars’ classifications as dying. The shape of the spectra, or the amount of light from different wavelengths, is characteristic of flattened disks of dust orbiting the stars.

The two stars’ similar spectra differ in detail, with one encircled by dust in crystalline form, the other by more shapeless, amorphous dust grains. This expands the range of known conditions under which complex dust grains and molecules can form and persist around stars, Kastner says.

Kastner describes the complex mixture of dust detected around the stars as the "tip of the iceberg," probably signaling that the disks of debris surrounding the stars are similar to the solar system’s Kuiper Belt, a vast, distant collection of comet- and even Pluto-like objects. "To explain the very strong infrared radiation we detected, the stars we observed would have to host especially large Kuiper belts," he says.

He adds: "If Kuiper belts are the smoking guns of planetary formation around stars, it seems that these stars, as massive as they are, may be forming planets."

Hypergiants are only a few million years old and have a relatively short lifespan as far as stars go, considering the billions of years it will take the sun to expire.

"These planetary systems, if they do form and exist, are short lived because these massive stars explode as supernovae," Kastner says. "So it’s amazing that the raw material for planets could be found in such a hostile environment."

Kastner’s study highlights only two of more than a dozen or so known examples of very massive stars in the Large Magellanic Cloud that are bright infrared sources. The next phase of the study will use new Spitzer spectra of the additional hypergiant stars to determine how many more are encircled by dusty disks and why only some of these disks contain crystalline dust grains.

"We’ve discovered a new class of object, and we need to use Spitzer to measure the infrared spectra of a lot more of these objects to learn how unique they really are," Kastner says.

Kastner’s team includes Catherine Buchanan from RIT and B. Sargent and W.J. Forrest from the University of Rochester.

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>