Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turbulence yields secrets to 73-year-old experiment

01.02.2006


A simple but groundbreaking experiment performed more than 70 years ago finally has been explained by scientists at the University of Illinois at Urbana-Champaign. The solution sheds new light on fluid turbulence -- the last major unsolved problem in classical physics.



"Turbulence is the jittery, swirling behavior of a gas or liquid when flowing next to a wall or around an obstacle," said Gustavo Gioia, a professor of theoretical and applied mechanics at Illinois. "Although most of the flows that surround us in everyday life are turbulent flows over rough walls, these flows have remained one of the least understood phenomena of classical physics."

In 1933, Johann Nikuradse carefully measured the friction a fluid experiences as it is forced through a pipe at varying speeds. Nikuradse found that the friction gets smaller as the speed gets larger, but then surprisingly increases at high speeds before attaining a constant value. This mysterious behavior, which must be taken into account by engineers in applications ranging from airplanes to oil pipelines, has now been explained.


In a paper to appear in the Feb. 3 issue of the journal Physical Review Letters, Gioia and graduate student Pinaki Chakraborty show how this behavior arises from fundamental properties of the way in which energy is distributed among the swirling eddies that populate a turbulent flow.

"As a result of our theoretical explanation, engineers can now calculate the friction force found along rough walls, rather than rely upon a chart or table based on the Nikuradse data," Chakraborty said.

In related work, to appear in the same issue of Physical Review Letters, Illinois physics professor Nigel Goldenfeld shows how the behavior implies that the turbulent state is not random, but contains subtle statistical correlations that are similar to those known to exist at phase transitions, such as the onset of magnetism in crystals.

"These findings suggest a new tack for theorists trying to understand turbulence," Goldenfeld said. "The roughness of the pipe walls is important and affects the flow in ways previously overlooked."

The researchers hope that as a result of these discoveries, the approaches that solved the problem of phase transitions will now find a new application in providing a fundamental understanding of turbulence.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>