Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turbulence yields secrets to 73-year-old experiment

01.02.2006


A simple but groundbreaking experiment performed more than 70 years ago finally has been explained by scientists at the University of Illinois at Urbana-Champaign. The solution sheds new light on fluid turbulence -- the last major unsolved problem in classical physics.



"Turbulence is the jittery, swirling behavior of a gas or liquid when flowing next to a wall or around an obstacle," said Gustavo Gioia, a professor of theoretical and applied mechanics at Illinois. "Although most of the flows that surround us in everyday life are turbulent flows over rough walls, these flows have remained one of the least understood phenomena of classical physics."

In 1933, Johann Nikuradse carefully measured the friction a fluid experiences as it is forced through a pipe at varying speeds. Nikuradse found that the friction gets smaller as the speed gets larger, but then surprisingly increases at high speeds before attaining a constant value. This mysterious behavior, which must be taken into account by engineers in applications ranging from airplanes to oil pipelines, has now been explained.


In a paper to appear in the Feb. 3 issue of the journal Physical Review Letters, Gioia and graduate student Pinaki Chakraborty show how this behavior arises from fundamental properties of the way in which energy is distributed among the swirling eddies that populate a turbulent flow.

"As a result of our theoretical explanation, engineers can now calculate the friction force found along rough walls, rather than rely upon a chart or table based on the Nikuradse data," Chakraborty said.

In related work, to appear in the same issue of Physical Review Letters, Illinois physics professor Nigel Goldenfeld shows how the behavior implies that the turbulent state is not random, but contains subtle statistical correlations that are similar to those known to exist at phase transitions, such as the onset of magnetism in crystals.

"These findings suggest a new tack for theorists trying to understand turbulence," Goldenfeld said. "The roughness of the pipe walls is important and affects the flow in ways previously overlooked."

The researchers hope that as a result of these discoveries, the approaches that solved the problem of phase transitions will now find a new application in providing a fundamental understanding of turbulence.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

nachricht Los Alamos researchers and supercomputers help interpret the latest LIGO findings
18.10.2017 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>