Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turbulence yields secrets to 73-year-old experiment

01.02.2006


A simple but groundbreaking experiment performed more than 70 years ago finally has been explained by scientists at the University of Illinois at Urbana-Champaign. The solution sheds new light on fluid turbulence -- the last major unsolved problem in classical physics.



"Turbulence is the jittery, swirling behavior of a gas or liquid when flowing next to a wall or around an obstacle," said Gustavo Gioia, a professor of theoretical and applied mechanics at Illinois. "Although most of the flows that surround us in everyday life are turbulent flows over rough walls, these flows have remained one of the least understood phenomena of classical physics."

In 1933, Johann Nikuradse carefully measured the friction a fluid experiences as it is forced through a pipe at varying speeds. Nikuradse found that the friction gets smaller as the speed gets larger, but then surprisingly increases at high speeds before attaining a constant value. This mysterious behavior, which must be taken into account by engineers in applications ranging from airplanes to oil pipelines, has now been explained.


In a paper to appear in the Feb. 3 issue of the journal Physical Review Letters, Gioia and graduate student Pinaki Chakraborty show how this behavior arises from fundamental properties of the way in which energy is distributed among the swirling eddies that populate a turbulent flow.

"As a result of our theoretical explanation, engineers can now calculate the friction force found along rough walls, rather than rely upon a chart or table based on the Nikuradse data," Chakraborty said.

In related work, to appear in the same issue of Physical Review Letters, Illinois physics professor Nigel Goldenfeld shows how the behavior implies that the turbulent state is not random, but contains subtle statistical correlations that are similar to those known to exist at phase transitions, such as the onset of magnetism in crystals.

"These findings suggest a new tack for theorists trying to understand turbulence," Goldenfeld said. "The roughness of the pipe walls is important and affects the flow in ways previously overlooked."

The researchers hope that as a result of these discoveries, the approaches that solved the problem of phase transitions will now find a new application in providing a fundamental understanding of turbulence.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>