Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From 2-D blueprint, material assembles into novel 3-D nanostructures

30.01.2006


An international team of scientists affiliated with the University of Wisconsin-Madison Nanoscale Science and Engineering Center has coaxed a self-assembling material into forming never-before-seen, three-dimensional nanoscale structures, with potential applications ranging from catalysis and chemical separation to semiconductor manufacturing.



Led by UW-Madison chemical and biological engineering professors Paul Nealey and Juan de Pablo and colleagues at Georg-August University in Germany and the Paul Scherrer Institute in Switzerland, the team has discovered that materials known as block copolymers will spontaneously assemble into intricate 3-D shapes when deposited onto particular 2-D surface patterns created with photolithography.

The result, published in the Jan. 27 issue of Physical Review Letters, demonstrates a promising strategy for building complex, 3-D nanostructures by using standard tools of the semiconductor industry, says Nealey. Those tools, particularly lithography, already allow the making of devices with dimensions substantially smaller than 100 nanometers, or a hundred-thousandth of a centimeter.


But photolithography is also limited, he says, because as practiced today it is essentially a two-dimensional process.

"What we’ve done by using self-assembling block copolymers is to extend photolithography to three dimensions," says Nealey. "And the structures we’ve fabricated are completely different from the same block copolymer materials in the bulk." Also important to manufacturing, the new 3-D nanostructures are stable, well defined and nearly defect-free over large areas. They also align perfectly with the underlying lithographic pattern-a key requirement for any device or application based on them.

"This research shows that lithography combined with block copolymers is more versatile and powerful than we thought. We can now create completely new structures that will no doubt have new properties and new applications," says de Pablo. "Exactly what those structures will be is anybody’s guess; here we demonstrate a complicated one. But the important thing is they open up a new field of exploration, both for these materials and this technology."

The specific structures the team produced were composed of two tightly interwoven, yet completely independent, networks of channels and passages-all at the scale of atoms. "What we have are two interpenetrating meshes, both of which are completely continuous. And yet you could travel through one from end to end without ever entering the other," says de Pablo.

The networks are also in perfect register with the photolithographic pattern underneath, which tells scientists exactly where each channel ends and gives them ready access to channel openings. A gas, for example, might be introduced through the openings to react with a catalyst deposited on the walls of the network. Nanoscale materials have massive surface areas compared to their volumes; thus, catalysis would be extremely efficient.

Another use would be chemical separation of substances of different sizes. "This process gives us exquisite control over the dimensions of pores," says de Pablo. "So, we could easily make membranes that are permeable to substances smaller than the length scale of the material."

The researchers study specific block copolymers consisting of long chains of two different types of molecules, which alternate with each other in blocks. At high temperature, block copolymers are molten and randomly mixed. But when cooled down, the material spontaneously assembles into alternating layers of molecules.

Paul Nealey | EurekAlert!
Further information:
http://wisc.edu

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>