Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From 2-D blueprint, material assembles into novel 3-D nanostructures

30.01.2006


An international team of scientists affiliated with the University of Wisconsin-Madison Nanoscale Science and Engineering Center has coaxed a self-assembling material into forming never-before-seen, three-dimensional nanoscale structures, with potential applications ranging from catalysis and chemical separation to semiconductor manufacturing.



Led by UW-Madison chemical and biological engineering professors Paul Nealey and Juan de Pablo and colleagues at Georg-August University in Germany and the Paul Scherrer Institute in Switzerland, the team has discovered that materials known as block copolymers will spontaneously assemble into intricate 3-D shapes when deposited onto particular 2-D surface patterns created with photolithography.

The result, published in the Jan. 27 issue of Physical Review Letters, demonstrates a promising strategy for building complex, 3-D nanostructures by using standard tools of the semiconductor industry, says Nealey. Those tools, particularly lithography, already allow the making of devices with dimensions substantially smaller than 100 nanometers, or a hundred-thousandth of a centimeter.


But photolithography is also limited, he says, because as practiced today it is essentially a two-dimensional process.

"What we’ve done by using self-assembling block copolymers is to extend photolithography to three dimensions," says Nealey. "And the structures we’ve fabricated are completely different from the same block copolymer materials in the bulk." Also important to manufacturing, the new 3-D nanostructures are stable, well defined and nearly defect-free over large areas. They also align perfectly with the underlying lithographic pattern-a key requirement for any device or application based on them.

"This research shows that lithography combined with block copolymers is more versatile and powerful than we thought. We can now create completely new structures that will no doubt have new properties and new applications," says de Pablo. "Exactly what those structures will be is anybody’s guess; here we demonstrate a complicated one. But the important thing is they open up a new field of exploration, both for these materials and this technology."

The specific structures the team produced were composed of two tightly interwoven, yet completely independent, networks of channels and passages-all at the scale of atoms. "What we have are two interpenetrating meshes, both of which are completely continuous. And yet you could travel through one from end to end without ever entering the other," says de Pablo.

The networks are also in perfect register with the photolithographic pattern underneath, which tells scientists exactly where each channel ends and gives them ready access to channel openings. A gas, for example, might be introduced through the openings to react with a catalyst deposited on the walls of the network. Nanoscale materials have massive surface areas compared to their volumes; thus, catalysis would be extremely efficient.

Another use would be chemical separation of substances of different sizes. "This process gives us exquisite control over the dimensions of pores," says de Pablo. "So, we could easily make membranes that are permeable to substances smaller than the length scale of the material."

The researchers study specific block copolymers consisting of long chains of two different types of molecules, which alternate with each other in blocks. At high temperature, block copolymers are molten and randomly mixed. But when cooled down, the material spontaneously assembles into alternating layers of molecules.

Paul Nealey | EurekAlert!
Further information:
http://wisc.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>