Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s Largest Telescope

19.01.2006


An image of how one element of the SKA might look (Credit: Chris Fluke, Swinburn University of Technology)


European funding has now been agreed to start designing the world’s largest telescope. The ‘Square Kilometre Array’ (SKA) will be an international radio telescope with a collecting area of one million square metres - equivalent to about 200 football pitches – making SKA 200 times bigger than the University of Manchester’s Lovell Telescope at Jodrell Bank and so the largest radio telescope ever constructed. Such a telescope would be so sensitive that it could detect TV Broadcasts coming from the nearest stars. The four-year Square Kilometre Array Design Study [SKADS] will bring together European and international astronomers to formulate and agree the most effective design. The final design will enable the SKA to probe the cosmos in unprecedented detail, answering fundamental questions about the Universe, such as ‘what is dark energy?’ and “how did the structure we see in galaxies today actually form?’

The new telescope will test Einstein’s General Theory of Relativity to the limit – and perhaps prove it wrong. It is certain to add to the long list of fundamental discoveries already made by radio astronomers including quasars, pulsars and the radiation left over from the Big Bang. By the end of this decade the design will be complete and astronomers anticipate building SKA in stages, leading to completion and full operation in 2020.

The SKA concept was first proposed to observe the characteristic radio emission from hydrogen gas. Measurements of the hydrogen signature will enable astronomers to locate and weigh a billion galaxies.



As the University of Manchester’s Professor Peter Wilkinson points out, “hydrogen is the most abundant element in the universe, but its signal is weak and so a huge collecting area is needed to be able to study it at the vast distances that take us back in time towards the Big Bang”. To which Professor Steve Rawlings, Oxford University, added,” the distribution of these galaxies in space tells us how the universe has evolved since the Big Bang and hence about the nature of the Dark Energy which is now making the universe expand faster with time”.

Another target for the SKA is pulsars; spinning remnants of stellar explosions which are the most accurate clocks in the universe. A million times the mass of the Earth but only the size of a large city, pulsars can spin around hundreds of times per second. Already these amazing objects have enabled astronomers to confirm Einstein’s prediction of gravitational waves, but Manchester’s Dr. Michael Kramer is looking further ahead “with the SKA we will find a pulsar orbiting a black hole and, by watching how the clock rate varies, we can tell if Einstein had the last word on gravity or not”.

Professor Richard Schilizzi, the International SKA Project Director, stresses the scale of the instrument needed to fulfil these science goals. "Designing and then building, such an enormous technologically-advanced instrument is beyond the scope of individual nations. Only by harnessing the ideas and resources of countries around the world is such a project possible”. Astronomers in Australia, South Africa, Canada, India, China and the USA are collaborating closely with colleagues in Europe to develop the required technology which will include sophisticated electronics and powerful computers that will play a far bigger role than in the present generation of radio telescopes. The European effort is based on phased array receivers, similar to those in aircraft radar systems. When placed at the focus of conventional mass-produced radio “dishes”, these arrays operate like wide-angle radio cameras enabling huge areas of sky to be observed simultaneously. A separate, much larger, phased array at the centre of the SKA will act like a radio fish-eye lens, constantly scanning the sky.

Funding for this global design programme has been provided by the European Commission’s Framework 6 “Design Studies” programme which is contributing about 27% of the total of €38M funding over the next four years. Individual countries are contributing the remainder. The UK has invested £5.6M (€8.3M) funding provided by the Particle Physics and Astronomy Research Council [PPARC]. When coupled with the UK’s share of the EC contribution then the UK’s overall contribution to the SKA Design Study (SKADS) programme is about 30% of the total.

The €38M European technology development programme is funded by the European Commission and governments in eight countries led by the Netherlands, the United Kingdom, France and Italy. The programme is being coordinated by Ir. Arnold van Ardenne, Head of Emerging Technologies at The Netherlands ASTRON Institute. In van Ardenne’s view “the critical task is to demonstrate that large numbers of electronic arrays can be built cost effectively – so that our dreams of radio cameras and radio fish-eye lenses can be turned into reality”.

In the UK a group of universities currently including Manchester, Oxford, Cambridge, Leeds and Glasgow, funded by the Particle Physics Research Council, is involved in all aspects of the design but is concentrating on sophisticated digital phased arrays and the distribution and analysis of the enormous volumes of data which the SKA will produce. Cambridge University’s Dr. Paul Alexander makes the point that “the electronics in the SKA makes it very flexible and allows for completely new ways of scanning the sky. But to make it work will require massive computing power”. Designers believe that by the time the SKA reaches full operation, 14 years from now, a new generation of computers will be up to the task.

The geographical location of SKA will be decided in the mid-term future and several nations have already expressed interest in hosting this state of the art astronomical facility.

Peter Barratt | alfa
Further information:
http://www.pparc.ac.uk
http://www.skatelescope.org
http://www.jb.man.ac.uk/ska/brochure/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>