Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists ’RAVE-ing’ about most ambitious star survey ever

12.01.2006


An international team of astronomers today announced the first results from the Radial Velocity Experiment, an ambitious all-sky spectroscopic survey aimed at measuring the speed, temperature, surface gravity and composition of up to a million stars passing near the sun.



Those first results from the project, known for short as RAVE, confirm that dark matter dominates the total mass of our home galaxy, the Milky Way, team members at The Johns Hopkins University and elsewhere said. The full survey promises to yield a new, detailed understanding of the origins of the galaxy, they said.

The results were released at the American Astronomical Society’s 207th meeting in Washington, D.C.


The team is using the "six-degree field" multi-object spectrograph on the 1.2-meter UK Schmidt Telescope at the Anglo-Australian Observatory, located at Siding Spring Observatory in New South Wales, Australia. The instrument is capable of obtaining spectroscopic information for as many as 150 stars at once, said Rosemary Wyse, a professor in the Henry A. Rowland Department of Physics and Astronomy in Johns Hopkins’ Krieger School of Arts and Sciences and a member of the RAVE team. RAVE includes members from the United States, Germany, Australia, Canada, the Netherlands, the United Kingdom, Slovenia, Italy, Switzerland and France.

"One important early application of RAVE aims to measure just how much stuff there is in our Milky Way galaxy -- the collection of stars, gas and dark matter that is the home of our sun," Wyse said. "Newton’s Law of Gravity allows us to figure out from the orbital motions of stars how much mass is holding them together. Faster motions need more mass. We know from analyzing the motions in other galaxies that there is a lot more mass than we can see and this dark matter appears to dominate. But we are not sure exactly how much dark matter is needed in our own galaxy, and we don’t know what the dark matter is made up of. That information is important, and the RAVE survey is going to help us answer some of those questions."

Greg Ruchti, a graduate student in physics and astronomy at Johns Hopkins who also is a member of the RAVE team, notes that the project "needs large samples of very fast stars, and the unprecedented scope of the survey is ideal to find these rare objects. I’m really excited about being part of the RAVE team."

With more data and more modeling, the RAVE team plans to ascertain the Milky Way’s overall mass, which, at present, is poorly understood, Wyse said. The team has what it considers a "better approach" to the problem: a model that makes very definite predictions about the way mass varies as a function of distance from the center of the Milky Way. If the team adopts this model, it can then estimate the overall mass from just the local "escape velocity," Wyse said.

Escape velocity is the speed at which a star would have to be moving to leave the galaxy. The value of this special speed depends on the mass of the galaxy: The higher the mass, the higher the speed necessary to escape. Thus, researchers can estimate the weight of the Milky Way galaxy by measuring how fast objects must move to leave it, Wyse said.

Current RAVE limits show that stars would need to move faster than around 500 kilometers per second to escape, more than twice as fast as the sun is moving around the galactic center. At that escape speed, it would take less than eight seconds to travel from Baltimore to Los Angeles.

"Some groups believe that our neighbor, the Andromeda Galaxy -- also known as M31 -- is the most massive galaxy in our local group. But we suspect from our early results that our Milky Way is actually the local heavyweight," said Martin Smith of the University of Groningen in the Netherlands. "We are, with RAVE, on the verge of an answer."

Funding for RAVE is provided by the National Science Foundation, for Johns Hopkins, and by the national research councils of other team members’ countries as well as by private sources.

"RAVE will run for several more years, and the full RAVE survey will provide a vast resource of stellar motions and chemical abundances, allowing us to answer fundamental questions about the formation and evolution of our galaxy," said Matthias Steinmetz, director of the Astrophysical Institute Potsdam, and leader of the RAVE collaboration.

Lisa De Nike | EurekAlert!
Further information:
http://www.jhu.edu/news/home06/jan06/wyse.html
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>