Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers demonstrate single molecule absorption spectroscopy

21.12.2005


A powerful new tool for probing molecular structure on surfaces has been developed by researchers at the University of Illinois at Urbana-Champaign. Single molecule absorption spectroscopy can enhance molecular analysis, surface manipulation and studies of molecular energy and reactivity at the atomic level.



"This new measurement method combines the chemical selectivity of optical absorption spectroscopy with the atomic-scale resolution of scanning tunneling microscopy," said Martin Gruebele, a professor of chemistry, physics and biophysics and corresponding author of a paper accepted for publication in the journal Nano Letters, and posted on its Web site. "The method literally feels how a molecule changes shape when it absorbs energy."

Unlike single molecule fluorescence spectroscopy, which is now a commonly used measurement technique, single molecule absorption spectroscopy has been an elusive goal.


"Single molecules don’t absorb much light, making detection difficult to begin with," said Gruebele, who also is a researcher at the university’s Beckman Institute for Advanced Science and Technology. "An even bigger problem, however, is that light-induced heating in the sample and in the microscope tip can produce so much noise that the signal is lost."

To reduce the noise, the researchers combined several special techniques -- each insufficient by itself -- into a method that allows them to detect single molecule absorption under laser illumination by scanning tunneling microscopy.

"First, the sample molecule is placed on a transparent silicon substrate," said Joseph Lyding, a professor of electrical and computer engineering and a researcher at the Beckman Institute. "Laser light will either be absorbed by the sample or will pass through the substrate with little or no heating effect. Second, the tip-sample junction is illuminated through the rear face of the substrate, significantly reducing tip heating."

Modulating the laser light with a mechanical chopper further reduces heating, Lyding said. A lock-in amplifier, which switches on and off at the same rate as the laser, filters out mechanical and electronic noise. As a result, the absorbed energy causes a change of shape in the electron density of the sample molecule, and the scanning tunneling microscope then measures that change of shape.

"Single molecule absorption spectroscopy is an extremely sensitive technique for analytical chemistry, for measuring electrical properties of molecules, and for studying energy transfer on surfaces," Gruebele said. "While most molecules don’t fluoresce -- limiting the usefulness of single molecule fluorescence spectroscopy -- all molecules absorb, making single molecule absorption spectroscopy a much more general approach."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>