Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers demonstrate single molecule absorption spectroscopy

21.12.2005


A powerful new tool for probing molecular structure on surfaces has been developed by researchers at the University of Illinois at Urbana-Champaign. Single molecule absorption spectroscopy can enhance molecular analysis, surface manipulation and studies of molecular energy and reactivity at the atomic level.



"This new measurement method combines the chemical selectivity of optical absorption spectroscopy with the atomic-scale resolution of scanning tunneling microscopy," said Martin Gruebele, a professor of chemistry, physics and biophysics and corresponding author of a paper accepted for publication in the journal Nano Letters, and posted on its Web site. "The method literally feels how a molecule changes shape when it absorbs energy."

Unlike single molecule fluorescence spectroscopy, which is now a commonly used measurement technique, single molecule absorption spectroscopy has been an elusive goal.


"Single molecules don’t absorb much light, making detection difficult to begin with," said Gruebele, who also is a researcher at the university’s Beckman Institute for Advanced Science and Technology. "An even bigger problem, however, is that light-induced heating in the sample and in the microscope tip can produce so much noise that the signal is lost."

To reduce the noise, the researchers combined several special techniques -- each insufficient by itself -- into a method that allows them to detect single molecule absorption under laser illumination by scanning tunneling microscopy.

"First, the sample molecule is placed on a transparent silicon substrate," said Joseph Lyding, a professor of electrical and computer engineering and a researcher at the Beckman Institute. "Laser light will either be absorbed by the sample or will pass through the substrate with little or no heating effect. Second, the tip-sample junction is illuminated through the rear face of the substrate, significantly reducing tip heating."

Modulating the laser light with a mechanical chopper further reduces heating, Lyding said. A lock-in amplifier, which switches on and off at the same rate as the laser, filters out mechanical and electronic noise. As a result, the absorbed energy causes a change of shape in the electron density of the sample molecule, and the scanning tunneling microscope then measures that change of shape.

"Single molecule absorption spectroscopy is an extremely sensitive technique for analytical chemistry, for measuring electrical properties of molecules, and for studying energy transfer on surfaces," Gruebele said. "While most molecules don’t fluoresce -- limiting the usefulness of single molecule fluorescence spectroscopy -- all molecules absorb, making single molecule absorption spectroscopy a much more general approach."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>