Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NASA satellites shipped to launch site

21.12.2005


NASA ’s Space Technology 5 (ST5) micro-satellites have arrived at the Vandenberg Air Force Base, Calif., launch site and are in the beginning stages of final launch preparation. ST5 is scheduled to launch in February 2006.


NASA’s Space Technology 5 (ST5) Project is building and testing three smaller satellites called micro-satellites. These micro-sats will test and validate new technologies for future science missions.



"The team is very excited and we are still working hard as we approach our launch date," said Art Azarbarzin, ST5 Project Manager at NASA’s Goddard Space Flight Center in Greenbelt, Md.

ST-5 will pave the way for future science missions by demonstrating the benefits of a constellation of small low-cost spacecraft obtaining simultaneous measurements in different locations. The three ST5 satellites will fly on a planned 90-day mission.


Miniaturized components and technologies are being integrated into each of the ST5 micro-satellites. Each micro-satellite weighs, about the size of a 13 inch television, are approximately 25 kilograms (55 pounds) when fully fueled and are 53 centimeters (20.7 inches) wide and 48 centimeters (18.7 inches) high. The three ST5 satellites will be launched using a Pegasus XL rocket and spun into a near-Earth polar elliptical orbit that will take them anywhere from 300 kilometers (190 miles) to 4,500 kilometers (2,800 miles) from Earth.

Although small in size, each of ST5 satellites are considered "full service," meaning they contain power, propulsion, communications, guidance, navigation and control functions found in spacecraft that are much larger.

Another unique feature as a result of the miniaturized size and reduced weight is the ability to launch multiple micro-satellites from a low-cost Pegasus XL rocket. The ST5 Project designed, fabricated and tested a new innovative Pegasus launch rack that supports the three micro-satellites in a "stacked" configuration. By utilizing this type of design, each micro-satellite will be individually deployed in a spinning (Frisbee-like) motion.

Once in orbit, the ST5 micro-satellites will be placed in a row about 40-140 km (about 25-90 miles) apart from each other to perform coordinated multi-point measurements of the Earth’s magnetic field using a highly sensitive miniaturized magnetometer built by University of California, Los Angeles. This type of measurement is useful for future Sun-Earth Connection missions that will study the effect of solar activity on the Earth’s magnetosphere, a protective magnetic "bubble" that surrounds the planet and helps protect it from harmful space radiation.

The Cold Gas Micro-Thruster (CGMT), built by Marotta Scientific Controls of Montville, N.J., will provide propulsion for orbit maintenance. The X-Band Transponder Communication System, built by Aero Astro of Chantilly, Va., will support two-way communications between the ST5 micro-satellites and the ground stations. Johns Hopkins University, Applied Physics Laboratory of Laurel, Md. along with Sensortex, Kennett Square, Pa and SANDIA National Labs, Albuquerque, NM., built the Variable Emittance Coatings for Thermal Control, which will test the ability to configure the thermal characteristics of a radiator surface on the micro sat. The University of Idaho, Center for Advanced Microelectronics and Bimolecular Research in Post Falls, Idaho, provided the Complementary Metal Oxide Semiconductor (CMOS) Ultra-Low Power Radiation Tolerant (CULPRiT) Logic, which provides a low-power (operating at 0.5 V) digital-logic test circuit that will help reduce power requirements for future satellites.

The ST5 Project is an instrumental part of the New Millennium Program. The New Millennium Program was created by NASA to develop and test critical and revolutionary technologies needed to enable future endeavors in space. Each flight acts as a "test track" for its suite of technologies, mission objectives, operations concepts, and scientific goals. New Millennium is managed for NASA by the Jet Propulsion Laboratory in Pasadena, Calif.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>