Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NASA satellites shipped to launch site

21.12.2005


NASA ’s Space Technology 5 (ST5) micro-satellites have arrived at the Vandenberg Air Force Base, Calif., launch site and are in the beginning stages of final launch preparation. ST5 is scheduled to launch in February 2006.


NASA’s Space Technology 5 (ST5) Project is building and testing three smaller satellites called micro-satellites. These micro-sats will test and validate new technologies for future science missions.



"The team is very excited and we are still working hard as we approach our launch date," said Art Azarbarzin, ST5 Project Manager at NASA’s Goddard Space Flight Center in Greenbelt, Md.

ST-5 will pave the way for future science missions by demonstrating the benefits of a constellation of small low-cost spacecraft obtaining simultaneous measurements in different locations. The three ST5 satellites will fly on a planned 90-day mission.


Miniaturized components and technologies are being integrated into each of the ST5 micro-satellites. Each micro-satellite weighs, about the size of a 13 inch television, are approximately 25 kilograms (55 pounds) when fully fueled and are 53 centimeters (20.7 inches) wide and 48 centimeters (18.7 inches) high. The three ST5 satellites will be launched using a Pegasus XL rocket and spun into a near-Earth polar elliptical orbit that will take them anywhere from 300 kilometers (190 miles) to 4,500 kilometers (2,800 miles) from Earth.

Although small in size, each of ST5 satellites are considered "full service," meaning they contain power, propulsion, communications, guidance, navigation and control functions found in spacecraft that are much larger.

Another unique feature as a result of the miniaturized size and reduced weight is the ability to launch multiple micro-satellites from a low-cost Pegasus XL rocket. The ST5 Project designed, fabricated and tested a new innovative Pegasus launch rack that supports the three micro-satellites in a "stacked" configuration. By utilizing this type of design, each micro-satellite will be individually deployed in a spinning (Frisbee-like) motion.

Once in orbit, the ST5 micro-satellites will be placed in a row about 40-140 km (about 25-90 miles) apart from each other to perform coordinated multi-point measurements of the Earth’s magnetic field using a highly sensitive miniaturized magnetometer built by University of California, Los Angeles. This type of measurement is useful for future Sun-Earth Connection missions that will study the effect of solar activity on the Earth’s magnetosphere, a protective magnetic "bubble" that surrounds the planet and helps protect it from harmful space radiation.

The Cold Gas Micro-Thruster (CGMT), built by Marotta Scientific Controls of Montville, N.J., will provide propulsion for orbit maintenance. The X-Band Transponder Communication System, built by Aero Astro of Chantilly, Va., will support two-way communications between the ST5 micro-satellites and the ground stations. Johns Hopkins University, Applied Physics Laboratory of Laurel, Md. along with Sensortex, Kennett Square, Pa and SANDIA National Labs, Albuquerque, NM., built the Variable Emittance Coatings for Thermal Control, which will test the ability to configure the thermal characteristics of a radiator surface on the micro sat. The University of Idaho, Center for Advanced Microelectronics and Bimolecular Research in Post Falls, Idaho, provided the Complementary Metal Oxide Semiconductor (CMOS) Ultra-Low Power Radiation Tolerant (CULPRiT) Logic, which provides a low-power (operating at 0.5 V) digital-logic test circuit that will help reduce power requirements for future satellites.

The ST5 Project is an instrumental part of the New Millennium Program. The New Millennium Program was created by NASA to develop and test critical and revolutionary technologies needed to enable future endeavors in space. Each flight acts as a "test track" for its suite of technologies, mission objectives, operations concepts, and scientific goals. New Millennium is managed for NASA by the Jet Propulsion Laboratory in Pasadena, Calif.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>