Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LJMU receives Royal accolade for developing the world’s largest robotic telescope

05.12.2005


Liverpool John Moores University (LJMU) has been awarded one of the UK’s most prestigious educational awards for its astronomical excellence and public engagement in science.


The Liverpool Telescope


Gamma Ray burst



The biennial Queen’s Anniversary Prizes for Further and Higher Education recognise and reward the outstanding contribution that universities and colleges in the United Kingdom make to the intellectual, economic, cultural and social life of the nation.

LJMU’s winning entry relates to the development of the world’s largest and most sophisticated ground-based robotic telescopes, which are opening up new areas of research for professional astronomers. The University is praised for the creative application of this technology not only as part of its innovative undergraduate programmes and distance learning courses, but also because it is being harnessed to reveal the wonders of science to school children around the UK through LJMU’s National Schools’ Observatory.


Professor Michael Brown, LJMU’s Vice-Chancellor said: “Our Astrophysics Research Institute has led the world in developing robotic telescopes, which can monitor variable astronomical objects in a way not possible with other telescopes. What’s even more ground-breaking is that they have been able to harness this cutting edge technology to enthuse future generations of scientists, from primary school pupils right through to postgraduate students, through innovative courses and the National Schools’ Observatory.”

He continued: “The Liverpool Telescope is the only optical telescope in the world, where science, education and outreach are really working side by side. It’s extremely pleasing to receive this recognition and the Queen’s Anniversary prize is a fitting tribute to the high calibre and the dedication of all the staff involved.”

Working to the scientific imperative identified by its astronomers, LJMU established a subsidiary company, Telescope Technologies Ltd (TTL), in 1996 to design and build the world’s largest robotic telescope, the LJMU-owned Liverpool Telescope, located in La Palma, Canaries.

The development of the Liverpool Telescope – and four other subsequent robotic telescopes – has enabled the ARI to play an instrumental role in realising the scientific vision of a network of research class telescopes, on world-class sites around the globe. This idea was first espoused by Mike Bode, LJMU’s Professor of Astrophysics, through the Particle Physics and Astronomy Research Council (PPARC)-funded RoboNet project.

The Liverpool Telescope has now been delivering front rank science to the UK and international communities fully robotically since late-2004. Unlike other ground-based telescopes, it is flexible enough to respond to objects that appear suddenly in the sky – such as supernovae, gamma ray bursts and comets – while also contributing, for example, to the study of planets outside our solar system.

In his endorsement of the University, the famous astronomer and presenter of The Sky at Night, Sir Patrick Moore CBE said ‘a full understanding of science is essential in the modern world and in this respect the Liverpool Telescope is of immense importance’.

A proportion of the Liverpool Telescope’s observational time is set aside for use by UK schools through LJMU’s National Schools’ Observatory (NSO). Over 500 schools are currently members, enabling thousands of primary and secondary school pupils to reach for the stars by bringing high quality astronomical images right into their classrooms.

Furthermore, as part of its drive to make science both more accessible and fun, LJMU played an instrumental role in the development of Mersey Ferries’ new £10 million visitor attraction in astronomy and space exploration, Spaceport. This partnership further demonstrates the unique approach adopted by the University and its astronomers in that they are directly contributing to the regeneration of Merseyside.

A permanent Spaceport exhibit showcases how schools can join the National Schools’ Observatory and visitors can also see some of the latest Liverpool Telescope images for themselves. LJMU now hopes to increase its NSO member schools to 1200 by 2007.

Mike Bode, Professor of Astrophysics, said: “If you want people to consider a career in science, you have to excite teachers and pupils. They have to be able to see something of the real work that scientists do. The NSO enables us to show science in action. The Queen’s Anniversary award – and the increasing number of schools who have signed up to the NSO – prove that our approach is working.”

Shonagh Wilkie | alfa
Further information:
http://www.livjm.ac.uk

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>