Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharp Vision Reveals Intimacy of Stars

29.11.2005


AMBER instrument on VLTI Probes Environment of Stars



Using the newly installed AMBER instrument on ESO’s Very Large Telescope Interferometer, which combines the light from two or three 8.2-m Unit Telescopes thereby amounting to observe with a telescope of 40 to 90 metres in diameter, two international teams of astronomers observed with unprecedented detail the environment of two stars. One is a young, still-forming star and the new results provide useful information on the conditions leading to the creation of planets. The other is on the contrary a star entering the latest stages of its life. The astronomers found, in both cases, evidence for a surrounding disc.

A first group of astronomers [1], led by Fabien Malbet from the Laboratoire d’Astrophysique de Grenoble, France, studied the young 10-solar mass stellar object MWC 297, which is still in the very early stage of its life [2].


"This scientific breakthrough opens the doors to an especially detailed scrutiny of the very close environment of young stars and will bring us invaluable knowledge on how planets form", says Malbet.

It is amazing to see the amount of details the astronomers could achieve while observing an object located more than 800 light-years away and hidden by a large amount of gas and dust. They found the object to be surrounded by a proto-planetary disc extending to about the size of our Solar System, but truncated in his inner part until about half the distance between the Earth and the Sun. Moreover, the scientists found the object to be surrounded by an outflowing wind, the velocity of which increased by a factor 9, from about 70 km/s near the disc to 600 km/s in the polar regions [3].

"The reason why the inner part of the disc should be truncated is not clear", adds Malbet. "This raises new questions on the physics of the environment of intermediate mass young stars."

The astronomers now plan to perform observations with AMBER [4] with three telescopes to measure departure from symmetry of the material around MWC 297.

Another international team of astronomers [5] has just done this kind of observations to study the surroundings of a star entering the last stages of its life. In a world premiere, they combined with AMBER the light of three 8.2-m Unit Telescopes of the VLT, gaining unsurpassed knowledge on a B[e] supergiant, a star that is more luminous than our Sun by more than a factor 10,000. This supergiant star is located ten times further away than MCW 297 at more than 8,000 light-years.

The astronomers made the observations to investigate the crucial questions concerning the origin, geometry, and physical structure of the envelope surrounding the star.

These unique observations have allowed the scientists to see structures on scale as small as 1.8 thousandths of an arcsecond - that is the same as distinguishing between the headlights of a car from about 230,000 km away, or slightly less than 2/3 of the distance from the Earth to the Moon!

Armando Domiciano de Souza, from the MPI für Radioastronomie in Bonn (Germany) and his colleagues made also use of the MIDI instrument on the VLTI [6], using two Unit Telescopes. Using their full dataset, they found the circumstellar envelope around the supergiant to be non-spherical, most probably because the star is also surrounded by an equatorial disc made of hot dust and a strong polar wind.

"These observations are really opening the doors for a new era of understanding of these complex and intriguing objects", says Domiciano de Souza.

"Such results could be achieved only due to the spectral resolution as well as spatial resolution that AMBER offers. There isn’t any similar instrument in the world," concludes Fabien Malbet, who is also the AMBER Project Scientist.

More information

The results presented in this press release are described in two papers to be published in the leading research journal, Astronomy and Astrophysics and are available, as PDF file, from the publisher web site: "Disk and wind interaction in the young stellar object MWC 297 spatially resolved with VLT/AMBER" by F. Malbet et al., "VLTI/AMBER and VLTI/MIDI spectro-interferometric observations of the B[e] supergiant CPD -57o 2874" by A. Domiciano de Souza et al.

Press releases on the MCW 297 results are also published in French by the CNRS, in Italian by INAF, and in German by the Max-Planck Institute.

Notes

[1]: The team of astronomers having conducted the study of MCW 297 with AMBER and ISAAC is composed of : F. Malbet , M. Benisty , W.J. De Wit, E. Tatulli, and J.-P. Berger (Laboratoire d’Astrophysique de Grenoble - LAOG, France), S. Kraus, K.-H. Hofmann, T. Preibisch, and G. Weigelt (Max-Planck Institut für Radioastronomie, Bonn, Germany), A. Meilland, O. Chesneau, and P. Stee (Laboratoire Gemini, Observatoire de la Côte d’Azur, France), R. Petrov (Laboratoire Universitaire d’Astrophysique de Nice - LUAN, France), A. Isella and L. Testi (INAF-Osservatorio Astrofisico di Arcetri, Italy), F. Millour (LAOG and LUAN), and their colleagues.

[2]: If the lifetime of the Sun were scaled to that of a human, the Sun would be starting his forties, whereas the star MWC 297 would just be a 1-3 day old newborn. The B[e] supergiant on the other hand would be almost 80 years old.

[3]: MWC 297 was observed during the second night of the first commissioning run of the AMBER instrument on the Kueyen-Melipal (47m) baseline of the VLTI. Additional observations were made using the ISAAC near-infrared spectrograph attached to Antu.

[4]: The Astronomical Multiple BEam Recombiner (AMBER) is a near-infrared, multi-beam interferometric instrument, combining simultaneously 3 telescopes. It was built in collaboration with ESO by a consortium of French, German and Italian institutes. It is offered to the users since October 2005. For more information, see the AMBER homepage. A press release about the First Light is available as ESO Press Release 07/04.

[5]: The study of the B[e] supergiant, named CPD -57o 2874, was made by A. Domiciano de Souza, T. Driebe, K.-H. Hofmann, S. Kraus, K. Ohnaka, Th. Preibisch, and G. Weigelt (Max-Planck-Institut für Radioastronomie, Bonn, Germany), O. Chesneau and P. Stee (Observatoire de la Côte d’Azur, Gemini, France), A. S. Miroshnichenko (MPfR, Bonn, Germany and Dept. of Physics and Astronomy, University of North Carolina at Greensboro, USA), R. G. Petrov (Lab. Univ. d’Astrophysique de Nice, France), F. Lisi (INAF-Osservatorio Astrof. Di Arcetri, Italy), F. Malbet (Laboratoire d’Astrophysique de Grenoble, France), and A. Richichi (ESO, Garching, Germany).

[6]: MIDI is the mid-infrared (8 to 13 microns) instrument of the VLT interferometer. It combines two beams (either from the 8.2-m Unit Telescopes or from the 1.8-m Auxiliary Telescopes).

Contacts

Fabien Malbet
Laboratoire d’Astrophysique de Grenoble (LAOG), France
Phone: +33 (0) 47 663 58 33
Email: Fabien.Malbet@obs.ujf-grenoble.fr

Armando Domiciano de Souza
Phone: +33 (0) 49 207 65 75
Email: Armando.Domiciano@unice.fr

Henri Boffin | EurekAlert!
Further information:
http://www.eso.org/outreach/press-rel/pr-2005/pr-29-05.html
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

nachricht Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>