Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic fields revealed in technicolour

17.11.2005


Vibrations of magnetization have for the first time been captured on camera by scientists at The University of Manchester revealing a rainbow of colours.



For the first time, images of induced magnetic pulsations at the frequency of visible light have been captured - as reported in Nature (17 November, 2005).

The colours are produced when a new type of material, created by the research team, is exposed to light. The magnetic vibrations induced in the material are so strong that they change the colour of the material from yellow to green. Such vibrations are supposed to be impossible in a natural medium.


The artificial material, created in collaboration with Chernogolovka Institute of Microelectronics Technologies (Russia) and Aston University (UK), has ’unnatural’ optical properties and could be the precursor of a ’perfect lens’, focusing images to show features smaller than the wavelength of light itself. It is based on Professor John Pendry’s (Imperial College London) idea of generating the magnetic response in nonmagnetic composites.

Dr Alexander Grigorenko, of the University’s School of Physics and Astronomy and Manchester Centre for Mesoscience and Nanotechnology, who led the research, said: "This discovery could be a milestone for optics and could help to realise the visible-light left-handed materials which promise the perfect lens. It also provides wherewithal for making new optical devices such as spasers and nanolasers."

The nanofabricated material was created by covering a glass plate with pairs of tiny gold pillars, each about 100 nanometres high. It was found that as light interacts with the structures, the induced currents create magnetic vibrations inside the pillar pairs and alter reflection properties, unlike a normal piece of gold. The research shows that negative permeability - a necessary condition for achieving a left-handed material - is indeed possible for visible light waves.

Dr Igor Khrushchev of Aston University, a specialist in optoelectronics, added: "The proposed structures could enjoy a variety of applications in optoelectronics and serve as optical signal processors, modulators, selective filters and antireflection coatings."

Potential applications of the materials and their unique properties include: smaller and smarter optical lenses, miniature lasers that can be built in computer chips and ultra-sensitive chemical and bio-detectors.

Simon Hunter | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>