Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic fields revealed in technicolour

17.11.2005


Vibrations of magnetization have for the first time been captured on camera by scientists at The University of Manchester revealing a rainbow of colours.



For the first time, images of induced magnetic pulsations at the frequency of visible light have been captured - as reported in Nature (17 November, 2005).

The colours are produced when a new type of material, created by the research team, is exposed to light. The magnetic vibrations induced in the material are so strong that they change the colour of the material from yellow to green. Such vibrations are supposed to be impossible in a natural medium.


The artificial material, created in collaboration with Chernogolovka Institute of Microelectronics Technologies (Russia) and Aston University (UK), has ’unnatural’ optical properties and could be the precursor of a ’perfect lens’, focusing images to show features smaller than the wavelength of light itself. It is based on Professor John Pendry’s (Imperial College London) idea of generating the magnetic response in nonmagnetic composites.

Dr Alexander Grigorenko, of the University’s School of Physics and Astronomy and Manchester Centre for Mesoscience and Nanotechnology, who led the research, said: "This discovery could be a milestone for optics and could help to realise the visible-light left-handed materials which promise the perfect lens. It also provides wherewithal for making new optical devices such as spasers and nanolasers."

The nanofabricated material was created by covering a glass plate with pairs of tiny gold pillars, each about 100 nanometres high. It was found that as light interacts with the structures, the induced currents create magnetic vibrations inside the pillar pairs and alter reflection properties, unlike a normal piece of gold. The research shows that negative permeability - a necessary condition for achieving a left-handed material - is indeed possible for visible light waves.

Dr Igor Khrushchev of Aston University, a specialist in optoelectronics, added: "The proposed structures could enjoy a variety of applications in optoelectronics and serve as optical signal processors, modulators, selective filters and antireflection coatings."

Potential applications of the materials and their unique properties include: smaller and smarter optical lenses, miniature lasers that can be built in computer chips and ultra-sensitive chemical and bio-detectors.

Simon Hunter | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>