Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists offer new approach to studying antimatter

01.11.2005


Laboratory experiments at UCR demonstrate interactions between two atoms containing antimatter

What happens when two atoms, each made up of an electron and its antimatter counterpart, called the positron, collide with each other? UC Riverside physicists are able to see for the first time in the laboratory that these atoms, which are called positronium atoms and are unstable by nature, become even more unstable after the collision. The positronium atoms are seen to destroy one another, turning into gamma radiation, a powerful type of electromagnetic radiation.

“Our research also gives the first hint of the presence of double positronium molecules, each of which is made up of two electrons and two positrons,” said Allen Mills, professor of physics and leader of the research project. “This kind of matter-antimatter pairing has never been formed or studied in the laboratory until now, and paves the way for a new field of study on its properties.”



The researchers will publish their work next month in Physical Review Letters.

Each particle of matter has a corresponding “antiparticle” of antimatter. Electrons are negatively charged particles that surround every atom’s nucleus. The positron is an antiparticle with the same mass and magnitude of charge as an electron but exhibiting a positive charge. When matter, such as an electron, combines with an equal amount of antimatter, such as a positron, they are converted into energetic particles or radiation.

Positrons are generally short-lived because they tend to combine quickly with electrons. But, by storing the positrons in a “magnetic bottle,” physicists have been able to prolong the life of the positrons and accumulate millions of them at once.

In their experiments, the UCR researchers obtained positrons from a radioactive form of sodium. They emptied the positrons out of a magnetic bottle onto a small spot on a target surface comprised of a thin piece of porous silica. There, the positrons combined with electrons to spontaneously form a high concentration of unstable positronium atoms. The newly formed atoms quickly took up residence in the pores of the target, and began to collide with one another, producing energy in the form of gamma radiation.

“This is the first time anyone has been able to observe a collection of positronium atoms that collide with one another,” Mills said. “We knew we had a dense collection of these atoms because, being so close to one another, they were annihilating faster than when they were just by themselves.”

The research paves the way for future experiments that would use a positronium atom laser to search for anti-gravity effects associated with antimatter and to measure the properties of positronium to a very high precision.

“So far, we’ve had only a suggestion that double positronium molecules were present in our experiment,” Mills said. “Our next step will be to confirm their existence and to measure their properties.”

Besides Mills, D. B. Cassidy, S. H. M. Deng and H. K. M. Tanaka of UCR; R. G. Greaves of First Point Scientific, Inc., Agoura Hills, Calif.; T. Maruo and N. Nishiyama of Osaka University, Japan; and J. B. Snyder of Principia College, Ill., were involved in the study. UCR and the National Science Foundation provided support.

A brief history of antimatter and positronium

Antimatter is of intellectual interest to scientists because it represents a mirror universe in which gravity, for example, might work in the opposite direction, with things “falling up.”

Paul Dirac predicted antimatter in 1930. Carl Anderson discovered the positron in 1932. In 1946, John Wheeler predicted a series of matter-antimatter aggregations, which he called polyelectrons. Besides the electron and positron, Wheeler envisioned the existence of positronium, the positronium ion and the double positronium molecule. Positronium was discovered in 1951 in experiments by Martin Deutsch. Allen Mills produced positronium ions (two electrons and one positron) in 1981 at Bell Laboratories.

Positrons are of interest to plasma physicists, and also are used in studying the electronic structure of metals, for detecting defects in solids and for measuring the properties of surfaces.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu
http://www.mediasources.ucr.edu

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>