Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ghostly spokes in Saturn’s rings spotted by Cassini

19.09.2005


Delighted scientists on the Cassini imaging team will be breaking out the champagne in celebration of the first Cassini sighting of spokes, the ghostly radial markings discovered in Saturn’s rings by NASA’s Voyager spacecraft 25 years ago.



A sequence of images taken on the unilluminated side of the rings has captured a few faint, narrow spokes in the outer B ring, about 3,500 kilometers long and about 100 kilometers wide (2,200 miles by 60 miles). The images show the spokes as they march into the shadow of the planet on the rings due to their orbital motion.

Dr. Carolyn Porco, Cassini imaging team leader at the Space Science Institute in Boulder, Colo., and one of the first individuals to study spokes in Voyager images, was attending the Division of Planetary Sciences meeting in Cambridge, England, when she was informed of the discovery by her staff members. "This is really a joy, and very unexpected," she said. "It takes me back to my early days on the Voyager mission."


According to the latest ideas, the visibility of spokes is believed to depend on the elevation of the Sun above the rings, the less sunlight, the more visible the spokes. For this reason, scientists weren’t expecting to see spokes until later in the mission when the sun angle is low.

"We had convinced ourselves that conditions wouldn’t be right for seeing spokes on the lit side of the rings until about 2007," Porco said. "But this finding seems to be telling us that conditions on the dark side of the rings are almost as good right now for seeing spokes."

In Voyager images from 25 years ago, these narrow wedge-shaped features typically extended 10,000 to 20,000 kilometers (6,200 to 12,400 miles) radially outward across Saturn’s B ring. When seen at low phase angles, spokes appeared dark; when seen at high phase angles, they appeared bright. This behavior indicated they were comprised of very small icy particles, about the size of the wavelength of light. Since Voyager days, spokes had been seen in images taken by NASA’s Hubble Space Telescope. The new Cassini images were taken at very high solar phase angles, where small particles can brighten substantially, making them more visible.

Porco’s analysis of spokes in the early 1980s found that these narrow arrangements of small particles came and went with a period equal to that of the powerful bursts of radio waves, called Saturn Kilometric Radiation (SKR), discovered by Voyager and coming from Saturn’s magnetic field. This association indicated that spokes were a phenomenon involving electromagnetic effects and partly connected to Saturn’s magnetic field.

Of intense interest will be a Cassini determination of the periodicity in the appearance of spokes. This will require monitoring spoke activity from a variety of geometries over several years. "Cassini has found that the SKR period has changed since Voyager, which though hard to believe, may mean that the rotation of Saturn’s interior has changed," said Porco. "That would be a finding of enormous consequence, so, we’ll be looking very closely to see if the frequency of spoke activity has changed too."

There is no commonly accepted theory for the creation of spokes. Some ideas suggest that spokes result from meteoroid impacts onto the rings; others suggest that they are created by instability in the magnetosphere near the rings.

Whatever the cause, imaging team members will study the new spoke images and maintain their vigil for additional spoke sightings. Viewing conditions on the dayside are expected to improve toward the end of Cassini’s nominal four-year mission, as Saturn continues in its nearly 30-year orbit and the Sun’s angle above the rings continues to drop.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, manages the Cassini-Huygens mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging team consists of scientists from the U.S., England, France, and Germany. The imaging operations center and team leader (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.

Preston Dyches | EurekAlert!
Further information:
http://www.ciclops.org
http://saturn.jpl.nasa.gov
http://www.nasa.gov/cassini

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>