Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Quasicrystal’ metal computer model could aid ultra-low-friction machine parts

16.09.2005


Duke University materials scientists have developed a computer model of how a "quasicrystal" metallic alloy interacts with a gas at various temperatures and pressures. Their advance could contribute to wider applications of quasicrystals for extremely low-friction machine parts, such as ball bearings and sliding parts.



Quasicrystals, like normal crystals, consist of atoms that combine to form structures -- triangles, rectangles, pentagons, etc. -- that repeat in a pattern. However, unlike normal periodic crystals, in quasicrystals the pattern does not repeat at regular intervals. So, while the atomic patterns of two crystalline materials rubbing together can line up and grind against one another, causing friction, quasicrystalline materials do not, and thus produce little friction.

Quasicrystalline metalic alloys are already used in a handful of commercial products, including as a coating for some non-stick frying pans because they combine the scratch- and temperature- resistant properties of a polymer such as Teflon with the heat conduction property of metals.


However, a major technical obstacle remains to using quasicrystal materials to minimize friction between surfaces sliding against one another, the scientists said. Microscopic surface contaminants, such as atmospheric gases, can come between the surfaces and interfere with the materials’ high lubricity. The gases form a thin layer of molecules over the alloy surface-- typically in a crystalline pattern -- which masks the desirable surface properties of the underlying quasicrystal, they said.

The researchers’ computer model of the effect of adsorbed gas on the quasicrystal alloy of aluminum, nickel and cobalt will be published in an upcoming issue of the journal Physical Review Letters. Their research was funded by the National Science Foundation.

"We are interested in quasicrystals because they are scratch-resistant and they have very little friction," said Stefano Curtarolo, lead author of the paper and a professor of materials science in Duke’s Pratt School of Engineering. "So they are promising for sliding interfaces in machines and applications where the potential for scratching might be involved."

Metals were believed to have only periodic crystalline structures until 1984, when materials scientists reported discovery of the first metallic alloy with a quasicrystalline structure. Since then, scientists, including Curtarolo, have sought to explore the properties and applications of quasicrystals.

The challenge Curtarolo, Duke graduate student Wahyu Setyawan and their colleagues at Penn State University address in their paper is how to preserve the low-surface-friction property of a quasicrystal in the presence of a gas.

In previous experiments, Curtarolo’s Penn State colleagues Nicola Ferralis, Renee D. Diehl, Raluca Trasca and Milton W. Cole had found that when xenon gas is exposed to their quasicrystal alloy, a single layer of xenon first forms in a quasicrystal pattern on top of the alloy, but by the time two or more layers formed, the xenon atoms develop a crystalline structure.

They chose to experiment with xenon, which does not react chemically with most metals, so they could consider the physical interaction of the gas and the metallic alloy, without complicating chemical interactions. In the experiments, the number of layers formed by the xenon atoms varies with the experimental temperature and pressure.

"If you have very little xenon gas, it’s going to follow the aperiodic symmetry of the quasicrystal; if you have a lot, it’s going to follow the periodic structure of xenon," Curtarolo said. "This change from quasicrystal to periodic crystal -- that’s what we want to know about."

Cutarolo and his colleagues modeled in their computer simulation this transition from a single layer of xenon with quasicrystalline properties to multiple layers with crystalline properties. The simulation is consistent with experimental data.

The simulation is available online at http://nietzsche.mems.duke.edu/SCIENCE/movies/XeQC/isotherm_T77K_big.mpg. In the simulation, the image on the left is of the average position of the xenon atom, the image on the right is of the electron diffraction pattern used to determine the position of the atoms and the graph on the bottom gives the density of the xenon gas.

"This model tells us how we might be able to control the transition and preserve the low-friction property of quasicrystals," Curtarolo said. "It’s a step towards understanding how quasicrystals interact with gases in the atmosphere and how we could eventually use them in real machines."

James Todd | EurekAlert!
Further information:
http://nietzsche.mems.duke.edu/SCIENCE/movies/XeQC/isotherm_T77K_big.mpg

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>