Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Quasicrystal’ metal computer model could aid ultra-low-friction machine parts

16.09.2005


Duke University materials scientists have developed a computer model of how a "quasicrystal" metallic alloy interacts with a gas at various temperatures and pressures. Their advance could contribute to wider applications of quasicrystals for extremely low-friction machine parts, such as ball bearings and sliding parts.



Quasicrystals, like normal crystals, consist of atoms that combine to form structures -- triangles, rectangles, pentagons, etc. -- that repeat in a pattern. However, unlike normal periodic crystals, in quasicrystals the pattern does not repeat at regular intervals. So, while the atomic patterns of two crystalline materials rubbing together can line up and grind against one another, causing friction, quasicrystalline materials do not, and thus produce little friction.

Quasicrystalline metalic alloys are already used in a handful of commercial products, including as a coating for some non-stick frying pans because they combine the scratch- and temperature- resistant properties of a polymer such as Teflon with the heat conduction property of metals.


However, a major technical obstacle remains to using quasicrystal materials to minimize friction between surfaces sliding against one another, the scientists said. Microscopic surface contaminants, such as atmospheric gases, can come between the surfaces and interfere with the materials’ high lubricity. The gases form a thin layer of molecules over the alloy surface-- typically in a crystalline pattern -- which masks the desirable surface properties of the underlying quasicrystal, they said.

The researchers’ computer model of the effect of adsorbed gas on the quasicrystal alloy of aluminum, nickel and cobalt will be published in an upcoming issue of the journal Physical Review Letters. Their research was funded by the National Science Foundation.

"We are interested in quasicrystals because they are scratch-resistant and they have very little friction," said Stefano Curtarolo, lead author of the paper and a professor of materials science in Duke’s Pratt School of Engineering. "So they are promising for sliding interfaces in machines and applications where the potential for scratching might be involved."

Metals were believed to have only periodic crystalline structures until 1984, when materials scientists reported discovery of the first metallic alloy with a quasicrystalline structure. Since then, scientists, including Curtarolo, have sought to explore the properties and applications of quasicrystals.

The challenge Curtarolo, Duke graduate student Wahyu Setyawan and their colleagues at Penn State University address in their paper is how to preserve the low-surface-friction property of a quasicrystal in the presence of a gas.

In previous experiments, Curtarolo’s Penn State colleagues Nicola Ferralis, Renee D. Diehl, Raluca Trasca and Milton W. Cole had found that when xenon gas is exposed to their quasicrystal alloy, a single layer of xenon first forms in a quasicrystal pattern on top of the alloy, but by the time two or more layers formed, the xenon atoms develop a crystalline structure.

They chose to experiment with xenon, which does not react chemically with most metals, so they could consider the physical interaction of the gas and the metallic alloy, without complicating chemical interactions. In the experiments, the number of layers formed by the xenon atoms varies with the experimental temperature and pressure.

"If you have very little xenon gas, it’s going to follow the aperiodic symmetry of the quasicrystal; if you have a lot, it’s going to follow the periodic structure of xenon," Curtarolo said. "This change from quasicrystal to periodic crystal -- that’s what we want to know about."

Cutarolo and his colleagues modeled in their computer simulation this transition from a single layer of xenon with quasicrystalline properties to multiple layers with crystalline properties. The simulation is consistent with experimental data.

The simulation is available online at http://nietzsche.mems.duke.edu/SCIENCE/movies/XeQC/isotherm_T77K_big.mpg. In the simulation, the image on the left is of the average position of the xenon atom, the image on the right is of the electron diffraction pattern used to determine the position of the atoms and the graph on the bottom gives the density of the xenon gas.

"This model tells us how we might be able to control the transition and preserve the low-friction property of quasicrystals," Curtarolo said. "It’s a step towards understanding how quasicrystals interact with gases in the atmosphere and how we could eventually use them in real machines."

James Todd | EurekAlert!
Further information:
http://nietzsche.mems.duke.edu/SCIENCE/movies/XeQC/isotherm_T77K_big.mpg

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>