Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Quasicrystal’ metal computer model could aid ultra-low-friction machine parts

16.09.2005


Duke University materials scientists have developed a computer model of how a "quasicrystal" metallic alloy interacts with a gas at various temperatures and pressures. Their advance could contribute to wider applications of quasicrystals for extremely low-friction machine parts, such as ball bearings and sliding parts.



Quasicrystals, like normal crystals, consist of atoms that combine to form structures -- triangles, rectangles, pentagons, etc. -- that repeat in a pattern. However, unlike normal periodic crystals, in quasicrystals the pattern does not repeat at regular intervals. So, while the atomic patterns of two crystalline materials rubbing together can line up and grind against one another, causing friction, quasicrystalline materials do not, and thus produce little friction.

Quasicrystalline metalic alloys are already used in a handful of commercial products, including as a coating for some non-stick frying pans because they combine the scratch- and temperature- resistant properties of a polymer such as Teflon with the heat conduction property of metals.


However, a major technical obstacle remains to using quasicrystal materials to minimize friction between surfaces sliding against one another, the scientists said. Microscopic surface contaminants, such as atmospheric gases, can come between the surfaces and interfere with the materials’ high lubricity. The gases form a thin layer of molecules over the alloy surface-- typically in a crystalline pattern -- which masks the desirable surface properties of the underlying quasicrystal, they said.

The researchers’ computer model of the effect of adsorbed gas on the quasicrystal alloy of aluminum, nickel and cobalt will be published in an upcoming issue of the journal Physical Review Letters. Their research was funded by the National Science Foundation.

"We are interested in quasicrystals because they are scratch-resistant and they have very little friction," said Stefano Curtarolo, lead author of the paper and a professor of materials science in Duke’s Pratt School of Engineering. "So they are promising for sliding interfaces in machines and applications where the potential for scratching might be involved."

Metals were believed to have only periodic crystalline structures until 1984, when materials scientists reported discovery of the first metallic alloy with a quasicrystalline structure. Since then, scientists, including Curtarolo, have sought to explore the properties and applications of quasicrystals.

The challenge Curtarolo, Duke graduate student Wahyu Setyawan and their colleagues at Penn State University address in their paper is how to preserve the low-surface-friction property of a quasicrystal in the presence of a gas.

In previous experiments, Curtarolo’s Penn State colleagues Nicola Ferralis, Renee D. Diehl, Raluca Trasca and Milton W. Cole had found that when xenon gas is exposed to their quasicrystal alloy, a single layer of xenon first forms in a quasicrystal pattern on top of the alloy, but by the time two or more layers formed, the xenon atoms develop a crystalline structure.

They chose to experiment with xenon, which does not react chemically with most metals, so they could consider the physical interaction of the gas and the metallic alloy, without complicating chemical interactions. In the experiments, the number of layers formed by the xenon atoms varies with the experimental temperature and pressure.

"If you have very little xenon gas, it’s going to follow the aperiodic symmetry of the quasicrystal; if you have a lot, it’s going to follow the periodic structure of xenon," Curtarolo said. "This change from quasicrystal to periodic crystal -- that’s what we want to know about."

Cutarolo and his colleagues modeled in their computer simulation this transition from a single layer of xenon with quasicrystalline properties to multiple layers with crystalline properties. The simulation is consistent with experimental data.

The simulation is available online at http://nietzsche.mems.duke.edu/SCIENCE/movies/XeQC/isotherm_T77K_big.mpg. In the simulation, the image on the left is of the average position of the xenon atom, the image on the right is of the electron diffraction pattern used to determine the position of the atoms and the graph on the bottom gives the density of the xenon gas.

"This model tells us how we might be able to control the transition and preserve the low-friction property of quasicrystals," Curtarolo said. "It’s a step towards understanding how quasicrystals interact with gases in the atmosphere and how we could eventually use them in real machines."

James Todd | EurekAlert!
Further information:
http://nietzsche.mems.duke.edu/SCIENCE/movies/XeQC/isotherm_T77K_big.mpg

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated

25.04.2018 | Power and Electrical Engineering

Electrode shape improves neurostimulation for small targets

25.04.2018 | Medical Engineering

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>