Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dusty old star offers window to our future, astronomers report

12.09.2005


Astronomers have glimpsed dusty debris around an essentially dead star where gravity and radiation should have long ago removed any sign of dust -- a discovery that may provide insights into our own solar system’s eventual demise several billion years from now.



The results are based on mid-infrared observations made with the Gemini 8-meter Frederick C. Gillett Telescope (Gemini North) on Hawaii’s Mauna Kea. The Gemini observations reveal a surprisingly high abundance of dust orbiting an ancient stellar ember named GD 362.

"This is not an easy one to explain," said Eric Becklin, UCLA astronomer and principle investigator for the Gemini observations. "Our best guess is that something similar to an asteroid or possibly even a planet around this long-dead star is being ground up and pulverized to feed the star with dust. The parallel to our own solar system’s eventual demise is chilling."


"We now have a window to the future of our own planetary system," said Benjamin Zuckerman, UCLA professor of physics and astronomy, member of NASA’s Astrobiology Institute, and a co-author on the Gemini-based paper. "For perhaps the first time, we have a glimpse into how planetary systems like our own might behave billions of years from now."

"The reason why this is so interesting is that this particular white dwarf has by far the most metals in its atmosphere of any known white dwarf," Zuckerman added. "This white dwarf is as rich in calcium, magnesium and iron as our own sun, and you would expect none of these heavier elements. This is a complete surprise. While we have made a substantial advance, significant mysteries remain."

The research team includes scientists from UCLA, Carnegie Institution and Gemini Observatory. The results are scheduled for publication in an upcoming issue of the Astrophysical Journal. The results will be published concurrently with complementary near-infrared observations made by a University of Texas team led by Mukremin Kilic at the NASA Infrared Telescope Facility, also on Mauna Kea.

"We have confirmed beyond any doubt that dust never does sleep!" quips Gemini Observatory’s Inseok Song, a co-author of the paper. "This dust should only exist for hundreds of years before it is swept into the star by gravity and vaporized by high temperatures in the star’s atmosphere. Something is keeping this star well stocked with dust for us to detect it this long after the star’s death."

"There are just precious few scenarios that can explain so much dust around an ancient star like this," said UCLA professor of physics and astronomy Michael Jura, who led the effort to model the dust environment around the star. "We estimate that GD 362 has been cooling now for as long as five billion years since the star’s death-throes began and in that time any dust should have been entirely eliminated."

Jura likens the disk to the familiar rings of Saturn and thinks that the dust around GD 362 could be the consequence of the relatively recent gravitational destruction of a large "parent body" that got too close to the dead star.

GD 362 is a white dwarf star. It represents the end-state of stellar evolution for stars like the sun and more massive stars like this one’s progenitor, which had an original mass about seven times the sun’s. After undergoing nuclear reactions for millions of years, GD 362’s core ran out of fuel and could no longer create enough heat to counterbalance the inward push of gravity. After a short period of instability and mass loss, the star collapsed into a white-hot corpse. The remains are cooling slowly over many billions of years as the dying ember makes its slow journey into oblivion.

Based on its cooling rate, astronomers estimate that between two billion to five billion years have passed since the death of GD 362.

"This long time frame would explain why there is no sign of a shell of glowing gas known as a planetary nebula from the expulsion of material as the star died," said team member and Gemini astronomer Jay Farihi.

During its thermonuclear decline, GD 362 went through an extensive period of mass loss, going from a mass of about seven times that of the sun to a smaller, one-solar-mass shadow of its former self.

Although about one-quarter of all white dwarfs contain elements heaver than hydrogen in their atmospheres, only one other white dwarf is known to contain dust. The other dusty white dwarf, designated G29-38, has about 100 times less dust density than GD 362.

The Gemini observations were made with the MICHELLE mid-infrared spectrograph on the Gemini North telescope on Mauna Kea, Hawaii.

"These data are phenomenal," said Alycia Weinberger of the Carnegie Institution. "Observing this star was a thrill! We were able to find the remnants of a planetary system around this star only because of Gemini’s tremendous sensitivity in the mid-infrared. Usually you need a spacecraft to do this well."

The Gemini mid-infrared observations were unique in their ability to confirm the properties of the dust responsible for the "infrared excess" around GD 362. The complementary Infrared Telescope Facility near-infrared observations and paper by the University of Texas team provided key constraints on the environment around the star.

University of Texas astronomer and co-author Ted von Hippel describes how the Infrared Telescope Facility (IRTF) observations complement the Gemini results: "The IRTF spectrum rules out the possibility that this star could be a brown dwarf as the source of the ’infrared excess,’" von Hippel said. "The combination of the two data sets provides a convincing case for a dust disk around GD 362."

Stuart Wolpert | EurekAlert!
Further information:
http://www.college.ucla.edu

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>