Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanofabrication: next generation chip manufacture?

30.08.2005


A new nanotechnology tool that will dramatically cut the cost of leading-edge nano research at the sub-50nm scale has been developed by EU researchers. It could lead to Next Generation Lithography (NGL) technology.



The commercially available first generation tool is low cost compared to sub-50nm alternatives. For example, electron beam lithography costs €2m per machine, whereas the Soft Ultraviolet (UV) Imprint machine developed by SOUVENIR project costs in its basic version well below €200,000. It will be used to produce novel and experimental nanotech devices.

"In principle, this new technique has the potential to be used for mass manufacture by the semiconductor industry. One approach we use can already form patterns down to the 10nm scale," says Dr Markus Bender, researcher at German company, Applied Micro- and Optoelectronics (AMO), and SOUVENIR coordinator.


Next Generation Lithography (NGL) is the holy grail of the semiconductor industry. It will allow rapid, large-scale manufacture of modern microchips at a sub-50nm scale. Industry giant Intel has spent 15 years and millions of dollars looking for it. A small but brilliant team of dedicated researchers in Europe may have found the solution.

Photolithography works by casting light through a mask to produce a pattern on a chemically-coated substrate. The light changes the chemical structure of the substrate. Depending on the type of photolithography, either the lit or shadowed chemical is washed away in the next step. In either case the result is a pattern etched into the substrate.

With nanolithography the patterns are invisible to the naked eye and the vast majority of the world’s microscopes. The result is the tiny circuits in semiconductor chips.

The SOUVENIR project developed a new technique to create those patterns, one that is low cost and, comparatively, low tech. In a first step the substrate was coated with a low viscosity, UV-curable resist. The resist is simply a UV-sensitive chemical layered onto the substrate. They then used a soft polymer mould, called an elastomer, pressed against the resist-coated substrate, called imprinting, followed by the UV photopolymerisation, or curing, of the resist.

This costs less than other photolithographic techniques. Because the mould is pressed against the resist, the system does not require the extremely expensive ’deep’ UV light sources used in the semiconductor industry. These light sources can only work properly in a vacuum. Finally, the elastomer mould is considerably cheaper than those used in microchip manufacture. The result is a low-cost pattern process at the sub-50nm scale.

However, the low cost comes at a price. Currently, the system is too slow and unproven to replace the current industrial photolithography processes. What’s more, the elastomer moulds used in the SOUVENIR process at the moment need further improvements for high-resolution alignment processes, essential for mass manufacturing semiconductors.

But ultimately it has the potential to become the next generation lithography. Thanks to research completed by the German government’s Federal Ministry of Education and Research (BMBF), it is possible to use the same imprinting technique using a hard mould, based on quartz, which does have the required precision for semiconductor manufacture. However, while quartz could address the precision issues the technique is currently too slow for large-scale semiconductor companies.

"This is the first generation of the tool we developed and, with work, we can in principle get much better, faster and more scalable results," says Dr Bender.

"We are working in close cooperation with an Austrian company, Electronic Vision Group (EVG) to develop tools for the two approaches. I think next year we’ll have a step and repeat tool for 300mm wafers on the market," says Dr Bender. This first generation tool is designed for small volume production, for example for chemical sensors and in biotechnology applications at small companies and research centres. Right now, small companies can’t afford their own tools for sub-50nm nanotech devices.

But ultimately, this research could change how the semiconductor industry works.

"This is a totally new technique and we’ve got to prove that we can reliably reproduce the results. That’s what we’ll be doing now," says Dr Bender.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>