Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanofabrication: next generation chip manufacture?

30.08.2005


A new nanotechnology tool that will dramatically cut the cost of leading-edge nano research at the sub-50nm scale has been developed by EU researchers. It could lead to Next Generation Lithography (NGL) technology.



The commercially available first generation tool is low cost compared to sub-50nm alternatives. For example, electron beam lithography costs €2m per machine, whereas the Soft Ultraviolet (UV) Imprint machine developed by SOUVENIR project costs in its basic version well below €200,000. It will be used to produce novel and experimental nanotech devices.

"In principle, this new technique has the potential to be used for mass manufacture by the semiconductor industry. One approach we use can already form patterns down to the 10nm scale," says Dr Markus Bender, researcher at German company, Applied Micro- and Optoelectronics (AMO), and SOUVENIR coordinator.


Next Generation Lithography (NGL) is the holy grail of the semiconductor industry. It will allow rapid, large-scale manufacture of modern microchips at a sub-50nm scale. Industry giant Intel has spent 15 years and millions of dollars looking for it. A small but brilliant team of dedicated researchers in Europe may have found the solution.

Photolithography works by casting light through a mask to produce a pattern on a chemically-coated substrate. The light changes the chemical structure of the substrate. Depending on the type of photolithography, either the lit or shadowed chemical is washed away in the next step. In either case the result is a pattern etched into the substrate.

With nanolithography the patterns are invisible to the naked eye and the vast majority of the world’s microscopes. The result is the tiny circuits in semiconductor chips.

The SOUVENIR project developed a new technique to create those patterns, one that is low cost and, comparatively, low tech. In a first step the substrate was coated with a low viscosity, UV-curable resist. The resist is simply a UV-sensitive chemical layered onto the substrate. They then used a soft polymer mould, called an elastomer, pressed against the resist-coated substrate, called imprinting, followed by the UV photopolymerisation, or curing, of the resist.

This costs less than other photolithographic techniques. Because the mould is pressed against the resist, the system does not require the extremely expensive ’deep’ UV light sources used in the semiconductor industry. These light sources can only work properly in a vacuum. Finally, the elastomer mould is considerably cheaper than those used in microchip manufacture. The result is a low-cost pattern process at the sub-50nm scale.

However, the low cost comes at a price. Currently, the system is too slow and unproven to replace the current industrial photolithography processes. What’s more, the elastomer moulds used in the SOUVENIR process at the moment need further improvements for high-resolution alignment processes, essential for mass manufacturing semiconductors.

But ultimately it has the potential to become the next generation lithography. Thanks to research completed by the German government’s Federal Ministry of Education and Research (BMBF), it is possible to use the same imprinting technique using a hard mould, based on quartz, which does have the required precision for semiconductor manufacture. However, while quartz could address the precision issues the technique is currently too slow for large-scale semiconductor companies.

"This is the first generation of the tool we developed and, with work, we can in principle get much better, faster and more scalable results," says Dr Bender.

"We are working in close cooperation with an Austrian company, Electronic Vision Group (EVG) to develop tools for the two approaches. I think next year we’ll have a step and repeat tool for 300mm wafers on the market," says Dr Bender. This first generation tool is designed for small volume production, for example for chemical sensors and in biotechnology applications at small companies and research centres. Right now, small companies can’t afford their own tools for sub-50nm nanotech devices.

But ultimately, this research could change how the semiconductor industry works.

"This is a totally new technique and we’ve got to prove that we can reliably reproduce the results. That’s what we’ll be doing now," says Dr Bender.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>