Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our Galaxy may be bigger than we thought

11.08.2005


Our Galaxy could be a lot bigger than we thought. That’s the conclusion of team of astronomers that’s found whole new ‘suburbs’ of stars in another galaxy.



Like archaeologists unearthing a lost city, the Australian and US astronomers used the 8-m Gemini South telescope in Chile to reveal the faint ancient outer parts of the galaxy NGC 300, showing that that galaxy is at least twice as big as previously thought.

The finding implies that our own Galaxy too is probably much bigger than textbooks say.


And ideas on how galaxies form will have to be rethought, to explain how NGC 300 could have stars so far out from its centre.

The research is published today [10 August 2005] in the Astrophysical Journal.

NGC300 is a spiral galaxy 6.1 million light-years away. It looks rather like our own Galaxy, with most of its stars lying in a thin disk like a pancake.

Using the Gemini Multi-Object Spectrograph instrument on the Gemini South telescope in Chile, the observers were able to see stars in the disk up to 47,000 light-years [14.4 kpc] from the galaxy’s centre—double the previously known radius of the disk.

These were extremely sensitive measurements, going more than ten times fainter than any previous images of this galaxy.

A few billion years ago the outskirts of NGC 300 were brightly lit suburbs that would have shown up as clearly as its inner metropolis. But the suburbs have dimmed with time, and are now inhabited only by faint, old stars—stars that need large telescopes such as Gemini South to detect them.

The finding has profound implications for our own Galaxy. Most current estimates put its size at 100,000 light-years across, about the same as the new estimate for NGC 300. “However, our galaxy is much more massive and brighter than NGC 300. So on this basis, our Galaxy is also probably much larger than we previously thought—perhaps as much as 200,000 light-years across,” said the paper’s lead author, Professor Joss Bland-Hawthorn of the Anglo-Australian Observatory.

The observers found no evidence that the outer part of NGC 300 was falling abruptly in brightness, or truncating, as happens in many galaxies.

“We now realize that there are distinctly different types of galaxy disks,” said team member Professor Ken Freeman of the Research School of Astronomy and Astrophysics at the Australian National University. “Probably most truncate—the density of stars in the disk drops off sharply. But NGC 300 just seems to go on forever. The density of stars in the disk falls off very smoothly and gradually.”

The observers traced NGC 300’s disk out to the point where the surface density of stars was equivalent to a one-thousandth of a Sun per square light-year.

“This is the most extended and diffuse population of stars ever seen,” said Bland-Hawthorn.

Helen Sim | alfa
Further information:
http://www.gemini.edu/index.php?option=content&task=view&id=144

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>