Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our Galaxy may be bigger than we thought

11.08.2005


Our Galaxy could be a lot bigger than we thought. That’s the conclusion of team of astronomers that’s found whole new ‘suburbs’ of stars in another galaxy.



Like archaeologists unearthing a lost city, the Australian and US astronomers used the 8-m Gemini South telescope in Chile to reveal the faint ancient outer parts of the galaxy NGC 300, showing that that galaxy is at least twice as big as previously thought.

The finding implies that our own Galaxy too is probably much bigger than textbooks say.


And ideas on how galaxies form will have to be rethought, to explain how NGC 300 could have stars so far out from its centre.

The research is published today [10 August 2005] in the Astrophysical Journal.

NGC300 is a spiral galaxy 6.1 million light-years away. It looks rather like our own Galaxy, with most of its stars lying in a thin disk like a pancake.

Using the Gemini Multi-Object Spectrograph instrument on the Gemini South telescope in Chile, the observers were able to see stars in the disk up to 47,000 light-years [14.4 kpc] from the galaxy’s centre—double the previously known radius of the disk.

These were extremely sensitive measurements, going more than ten times fainter than any previous images of this galaxy.

A few billion years ago the outskirts of NGC 300 were brightly lit suburbs that would have shown up as clearly as its inner metropolis. But the suburbs have dimmed with time, and are now inhabited only by faint, old stars—stars that need large telescopes such as Gemini South to detect them.

The finding has profound implications for our own Galaxy. Most current estimates put its size at 100,000 light-years across, about the same as the new estimate for NGC 300. “However, our galaxy is much more massive and brighter than NGC 300. So on this basis, our Galaxy is also probably much larger than we previously thought—perhaps as much as 200,000 light-years across,” said the paper’s lead author, Professor Joss Bland-Hawthorn of the Anglo-Australian Observatory.

The observers found no evidence that the outer part of NGC 300 was falling abruptly in brightness, or truncating, as happens in many galaxies.

“We now realize that there are distinctly different types of galaxy disks,” said team member Professor Ken Freeman of the Research School of Astronomy and Astrophysics at the Australian National University. “Probably most truncate—the density of stars in the disk drops off sharply. But NGC 300 just seems to go on forever. The density of stars in the disk falls off very smoothly and gradually.”

The observers traced NGC 300’s disk out to the point where the surface density of stars was equivalent to a one-thousandth of a Sun per square light-year.

“This is the most extended and diffuse population of stars ever seen,” said Bland-Hawthorn.

Helen Sim | alfa
Further information:
http://www.gemini.edu/index.php?option=content&task=view&id=144

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>