Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists weather a space storm to find its origin

03.08.2005


A team of researchers from the UK and France used SOHO, ACE and the four Cluster spacecraft to study a huge eruption on the Sun, tracing its progress from birth to when it reached Earth.



The team, led by scientists from University College London, identified the source of a ‘coronal mass ejection’ (CME) and analysed how its magnetic field changes on its path to Earth.

Triggered by a massive explosion on the Sun with millions of times more energy than a nuclear bomb, these CMEs are blasts of gas that could engulf Earth. CMEs are caused by the collision of loop-like magnetic field lines with different polarities on the Sun’s surface.


“There’s been much speculation about the shape of the magnetic field and how it might change on its journey from the Sun to Earth. Using complementary satellites we have been able to see that the magnetic field changes very little on its journey,” said Dr Louise Harra, of UCL Mullard Space Science Laboratory.

Earth’s magnetic field, forming the magnetosphere, protects the planet from the full brunt of these blasts, but when the CME’s fields collide directly with it they can excite geomagnetic storms. In extreme cases they cause electrical power outages and damage to communications networks and satellites.

“If we are to successfully predict storms we need to be able to identify an Earth-directed coronal mass ejection as it leaves the Sun and work out how it evolves,” said Dr Harra.

The CME was detected on 20 January 2004 by the ESA/NASA SOHO spacecraft which was used to identify the source of the ejection.

Two days later, on its journey to Earth, the ejected magnetic field passed ESA’s four Cluster spacecraft. Their tetrahedral formation allowed the sampling of the speed and direction of the field. Similar measurements were made by NASA’s ACE spacecraft.

“SOHO and Cluster spacecraft are ideally suited to working together - SOHO ’sees’ the explosions from the Sun and Cluster ’feels’ them. Our next step is to predict the eruption of storms on the Sun,” said Dr Harra.

This direct measurement by SOHO, ACE and Cluster confirms previous Earth-bound predictions and takes researchers a step closer to forecasting these geomagnetic storms.

Bernhard Fleck | alfa
Further information:
http://www.esa.int/esaSC/SEM5TK808BE_index_0.html

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>