Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One of the fastest phenomenon of electronic dynamics

21.07.2005


The journal Nature publishes this week a study of electronic dynamics (“Direct observation of electron dynamics in the attosecond domain”). The participants of this study, together with other researchers, have been professors Daniel Sánchez-Portal and Pedro Miguel Etxenike from the Donostia International Physics Center (DIPC).



A researcher group of various German laboratories has done the experimental part of the study, and the theoretical explanation based on quantum physics of what has been observed has been done in DIPC (San Sebastian).

This work answers the following question: How long does it take an electron to travel from an atom to the next atom? The main conclusion is that the time required is much shorter than the time it could be measured until now. This study analyses the dynamics of electrons in the case of sulphur atoms laid on metal surfaces (ruthenium). Electrons jump from the sulphur to the metallic surface in 320 attoseconds approximately (1 attosecond is equivalent to 0,000000000000000001 seconds). In order to have an idea how small this number is, we could say that one attosecond at one second would be what a second would be at the age of the universe (about 14,000 millions of years).


The main innovation of this work consists on the possibility to measure a charge transference time between an atom and a surface at attoseconds, and at the same time, two theory physicists of the University of the Basque Country (EHU) have worked out details of the process by means of quantum mechanics. This phenomenon is one of the fastest ever seen directly in the solid state physics, and it shows it is possible to obtain information about the dynamics of electrons with great resolution. In order to achieve such resolution it is necessary to use a precise measurement "device", in this case, a clock that provides electronic transitions within the same atom.

The question about the time electrons require to travel between different atomic centres is very important for several phenomena. It is important to optimise the design of materials that will constitute future electronic devices (areas of nanoelectronic and molecular electronic). Particularly, the technique used allows to distinguish among different values of the electronic “spin” (giromagnetic ratio), and this opens new areas of study in the field of “spintronic”, a new electronics in which the key factor is not the electron charge as in the conventional electronics, but the spin. Charge transference processes are also essential for life (photosynthesis), energy production (photovoltaic cells) and, in general, for the photochemistry and electrochemistry.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com
http://www.elhuyar.com

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>