Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One of the fastest phenomenon of electronic dynamics

21.07.2005


The journal Nature publishes this week a study of electronic dynamics (“Direct observation of electron dynamics in the attosecond domain”). The participants of this study, together with other researchers, have been professors Daniel Sánchez-Portal and Pedro Miguel Etxenike from the Donostia International Physics Center (DIPC).



A researcher group of various German laboratories has done the experimental part of the study, and the theoretical explanation based on quantum physics of what has been observed has been done in DIPC (San Sebastian).

This work answers the following question: How long does it take an electron to travel from an atom to the next atom? The main conclusion is that the time required is much shorter than the time it could be measured until now. This study analyses the dynamics of electrons in the case of sulphur atoms laid on metal surfaces (ruthenium). Electrons jump from the sulphur to the metallic surface in 320 attoseconds approximately (1 attosecond is equivalent to 0,000000000000000001 seconds). In order to have an idea how small this number is, we could say that one attosecond at one second would be what a second would be at the age of the universe (about 14,000 millions of years).


The main innovation of this work consists on the possibility to measure a charge transference time between an atom and a surface at attoseconds, and at the same time, two theory physicists of the University of the Basque Country (EHU) have worked out details of the process by means of quantum mechanics. This phenomenon is one of the fastest ever seen directly in the solid state physics, and it shows it is possible to obtain information about the dynamics of electrons with great resolution. In order to achieve such resolution it is necessary to use a precise measurement "device", in this case, a clock that provides electronic transitions within the same atom.

The question about the time electrons require to travel between different atomic centres is very important for several phenomena. It is important to optimise the design of materials that will constitute future electronic devices (areas of nanoelectronic and molecular electronic). Particularly, the technique used allows to distinguish among different values of the electronic “spin” (giromagnetic ratio), and this opens new areas of study in the field of “spintronic”, a new electronics in which the key factor is not the electron charge as in the conventional electronics, but the spin. Charge transference processes are also essential for life (photosynthesis), energy production (photovoltaic cells) and, in general, for the photochemistry and electrochemistry.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com
http://www.elhuyar.com

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>