Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Identifying the ’signatures’ of protons in water


Free protons from acids associate with 1, 2 or 3 molecules of water and the structures can be identified by unique infrared laser spectrum signatures, according to a report in Science by Yale professor of chemistry Mark A. Johnson and his collaborators at Yale, the University of Pittsburgh and the University of Georgia.

Eigen and Zundel models for proton shared by water molecules

Acids yielding free protons are common in biological and chemical systems and the measurement of pH to determine acidity of an aqueous solution is a simple, standard procedure. However, it has not been as easy to determine where the liberated protons are located and how they interact with water molecules.

The scientists tackled these questions using infra-red laser light, at much lower energies than were previously accessible, to monitor how the vibration profile changes when a proton is associated with two to eleven water molecules.

The researchers first established a spectral signature for the symmetrically hydrated Eigen cation, which has a minimum energy (H3O)+ ion core and three associated "dangling" water molecules. As they successively added or subtracted water molecules and compared the spectral signatures, they mimicked water fluctuations.

"Surprisingly large spectral shifts are driven by small changes in the hydration environment," said Johnson. "Although previous work anticipated a change from Zundel to Eigen structures as you progress from 8 to 9 water molecules, the change in the low energy bands here is dramatic. The profile for the 9-membered cluster is much like bulk water, but then the 10-membered cluster is again simpler."

The study shows that the proton associated with the Eigen cation undergoes vibrations highest in energy because it supports the greatest distribution of charge, that is, over three H atoms. As different numbers of water molecules surround the H3O+ core, the excess charge can become more localized onto two or even one of the H atoms, causing substantial, size-dependent shifts in the spectral signature of the excess proton. This extreme response to breaking symmetry is consistent with Zundel’s model of the excess proton being a highly polarizable species.

"The basic point is that the proton is a moving target, rapidly switching its character from one species to the next according to how many water molecules it is associated with," said Johnson. "Now that the spectral signatures of various local environments in water are known, the big question left is how this all comes together as we continue to grow crystals toward bulk water (ice)."

Janet Rettig Emanuel | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>