Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identifying the ’signatures’ of protons in water

14.07.2005


Free protons from acids associate with 1, 2 or 3 molecules of water and the structures can be identified by unique infrared laser spectrum signatures, according to a report in Science by Yale professor of chemistry Mark A. Johnson and his collaborators at Yale, the University of Pittsburgh and the University of Georgia.


Eigen and Zundel models for proton shared by water molecules



Acids yielding free protons are common in biological and chemical systems and the measurement of pH to determine acidity of an aqueous solution is a simple, standard procedure. However, it has not been as easy to determine where the liberated protons are located and how they interact with water molecules.

The scientists tackled these questions using infra-red laser light, at much lower energies than were previously accessible, to monitor how the vibration profile changes when a proton is associated with two to eleven water molecules.


The researchers first established a spectral signature for the symmetrically hydrated Eigen cation, which has a minimum energy (H3O)+ ion core and three associated "dangling" water molecules. As they successively added or subtracted water molecules and compared the spectral signatures, they mimicked water fluctuations.

"Surprisingly large spectral shifts are driven by small changes in the hydration environment," said Johnson. "Although previous work anticipated a change from Zundel to Eigen structures as you progress from 8 to 9 water molecules, the change in the low energy bands here is dramatic. The profile for the 9-membered cluster is much like bulk water, but then the 10-membered cluster is again simpler."

The study shows that the proton associated with the Eigen cation undergoes vibrations highest in energy because it supports the greatest distribution of charge, that is, over three H atoms. As different numbers of water molecules surround the H3O+ core, the excess charge can become more localized onto two or even one of the H atoms, causing substantial, size-dependent shifts in the spectral signature of the excess proton. This extreme response to breaking symmetry is consistent with Zundel’s model of the excess proton being a highly polarizable species.

"The basic point is that the proton is a moving target, rapidly switching its character from one species to the next according to how many water molecules it is associated with," said Johnson. "Now that the spectral signatures of various local environments in water are known, the big question left is how this all comes together as we continue to grow crystals toward bulk water (ice)."

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Physics and Astronomy:

nachricht New manifestation of magnetic monopoles discovered
08.12.2017 | Institute of Science and Technology Austria

nachricht NASA's SuperTIGER balloon flies again to study heavy cosmic particles
07.12.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>