Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rosetta monitors Deep Impact

21.06.2005


ESA’s comet chaser Rosetta will take part in the one of world’s largest astronomical observation campaigns - the Deep Impact event - while on its cruise to Comet 69P/Churyumov-Gerasimenko. Rosetta will be watching from 29 June to 14 July 2005.



Deep Impact is a NASA mission to send a 370 kg copper ‘impactor’ probe to Comet 9P/Tempel 1 on 4 July 2005. Tempel 1 is a short-period comet, whose orbit runs between those of Mars and Jupiter. There is scientific interest in comets because their composition carries important information about the origin of the Solar System, as they have remained basically unchanged since then.

Rosetta, with its set of very sensitive instruments for cometary investigations, will use its capabilities to observe Tempel 1 before, during and after the impact. At a distance of about 80 million kilometres from the comet, which will be lying about 90 degrees from the Sun, Rosetta will be in the most privileged position to observe the event from space.


The observing geometry will be favourable for observations with Rosetta’s microwave spectrometer, MIRO, and the VIRTIS visual and IR mapping spectrometer. MIRO will concentrate on the chemical composition and temperature of the gas. VIRTIS will analyse thermal emission by the comet to determine the composition of the dust ejected, and thus reveal the comet’s mineralogy.

In addition, Rosetta will be the spacecraft carrying the best available ultraviolet instrument, ALICE, to monitor the event. ALICE will analyse the gas coming from the impact and tell about its chemical composition.

The Rosetta OSIRIS imaging system will also provide images of the comet’s nucleus from a far-away distance. Scientists also hope to make a 3D reconstruction of the dust cloud around the comet by combining the OSIRIS images with those taken from ground observatories.

Rosetta’s observations will provide a unique data set complementary to the observations from the Deep Impact spacecraft and the ground-based telescopes. Before impact, Rosetta will observe Tempel 1 during three full rotations of the comet around its axis. This allows characterising the variations of the comet’s state over rotation and time, and preparing for the observations during and after impact.

Rosetta will look at the comet continuously. In the initial phase (starting on 29 June 01:34 CEST), when the comet is expected to change only slowly due to its rotation, Rosetta will take the time to study or ‘dwell’ on several areas on the coma of Tempel 1.

About fifteen minutes before impact (due at 07:44 CEST), Rosetta will start observing the comet with shorter dwell time, as fast changes are expected due to the impact. At 09:19, about one hour and a half after impact, Rosetta will go back to the monitoring mode as before the impact for 10 more days.

Rosetta will contribute to the major objectives of the Deep Impact mission.

The spacecraft’s instruments will measure the composition of the crater and its ejected material – a cloud of dust and gas cloud expected to expand and reach its maximum brightness about 10 hours after impact. Rosetta will also monitor the changes in the natural outgassing of the comet following the impact.

With these observations, Rosetta may also help to confirm if the impact has permanently triggered new activity on the comet.

Gerhard Schwehm | alfa
Further information:
http://www.esa.int/SPECIALS/Rosetta/SEMCOZ1DU8E_0.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>