Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny holes offer surprising insights

07.03.2005


Experimentally measured time-structure of the electric field of an 11-fs optical pulse incident on a 800-nm period array of 50-nm wide slits in a thin gold film and on the transmitted output pulse.


Microscopic spatial structure of the surface plasmon polarition in the near-field of an 800-nm period nanoslit array in a thin gold film at a wavelength corresponding to (left) enhanced superradiant damping and (right) reduced subradiant damping of the plasmon field.


Researchers from Berlin and Seoul store light in plasmonic crystals

Light can creep through tiny holes in a metal plate, even if those holes are smaller in diameter than the wavelength of light. What’s more, the light is stored for a short period of time on the metal surface, as if the metal were a photonic crystal. The controlled interaction of light with such metal structures could pave the way to unique methods for nanosensing or nanoscale information transfer, write Claus Ropers and colleagues in the forthcoming issue of Physical Review Letters (“Femtosecond light transmission and subradiant damping in plasmonic crystals”).

In their experiments conducted at the Max Born Institute in Berlin, Ropers and colleagues aim an ultrashort laser pulse at a nanostructured metal surface. The initial laser pulse measures 10 femtoseconds (fs). 1 fs is the millionth part of a billionth second (0.000000000000001 second). As the light hits the surface, it drives electron oscillations and generates surface-bound electromagnetic waves, known as surface plasmon polaritons.



These surface plasmon polaritons cause an unusually high transmission through sub-wavelength apertures, i.e. the tiny holes, or travel along nanometric waveguides. These phenomena evolve on an extremely short time scale and have so far refrained from any direct time-resolved observation. Now, researchers at the Max-Born-Institute in Berlin, Germany and at Seoul National University in Korea, report on a new experiment to measure the polariton lifetime by tracking amplitude and phase of extremely short, 10-fs laser pulses while they are transmitted through a plasmonic crystal, a periodic array of nanometer-sized slits in a thin metal film (Fig. 1). They find lifetimes reaching up to 300 fs, more than an order of magnitude larger than previously thought.

This surprising finding can be tracked down to the microscopic spatial structure of the plasmon field (Fig. 2), which displays symmetric (cosine-like) and antisymmetric (sine-like) plasmon modes, depending on excitation wavelength. The latter display a strongly reduced overlap with the nanoslit scattering centers, which inhibits the emission of electromagnetic radiation and therefore reduces radiative damping of the plasmon field.

These experiments devise a way to control surface plasmon radiation by tailoring their spatial mode profiles, an important prerequisite for using plasmonic crystals in nanosensing, or waveguiding applications or even as flying qubits in quantum information processing.

Josef Zens | alfa
Further information:
http://www.fv-berlin.de

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>