Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist of the University of Ghent discovers natural atom antihydrogen

04.03.2005


On February 15, 2005 of the Physics/Einstein Year, the complete story of the discovery of natural atom antihydrogen, started in 1985, was published on-line.



The antihydrogen problem has become a highly mediatic issue, both in the specialized physics and the more general press [1]. A real hype started at the end of 2002 when rivalling CERN-based groups ATHENA and ATRAP both claimed the production of large quantities of artificial antihydrogen. Scientists, wondering about a signature for the presence of this mysterious species antihydrogen, were disappointed as no direct signature whatever was presented. In fact, a spectral identification of antihydrogen is impossible since measuring its spectrum is exactly the goal of ATHENA and ATRAP collaborations.

Strangely, the same media failed to report that on October 21 2002, a paper was published with a signature for the antihydrogen atom in the observed line spectrum of natural H [2], an essential step in the discovery of natural antihydrogen by G. Van hooydonk, science professor at and former Chief-Librarian of the Ghent University. This signature would not make sense if it was not confirming an earlier signature in the band spectrum of natural molecular hydrogen [3]. Both types of complementary signatures for natural antihydrogen, as well as a Mexican hat-type potential [4], were left unnoticed since the time of Bohr.


The information published online is available in print in the 2005 March issue of the European Physical journal D [5]. With its sound theoretical basis, this discovery has drastic repercussions for physics at large and for atomic and molecular physics (chemistry) in particular. According to the referees, the story is fascinating to read. The existence of natural antihydrogen not only flaws the CERN-experiments on artificial antihydrogen [6]; it is also important for the three fundamental symmetries CPT in physics and for Einstein’s WEP. The existence of natural antihydrogen also immediately solves the long standing problem of the so-called matter-antimatter asymmetry of the Universe, where natural hydrogen is the most abundant species [7]. As a matter of fact, in natural stable molecular hydrogen, the amounts of atom hydrogen and of its mirrored counterpart antihydrogen must be exactly the same for old-fashioned stochiometric reasons.

[1] C. Seife, Science 298, 1327 (2002); ibidem 307, 26 (2005) and hundreds of press releases worldwide
[2] G. Van Hooydonk, Phys. Rev. A 66, 044103 (2002)
[3] G. Van Hooydonk, Spectrochim. Acta A 56, 2273 (2000); physics/0003005 (2000)
[4] G. Van Hooydonk, Acta Phys. Hung. A NS 19, 385 (2004), lecture at the Wigner Centennial 2002, Pecs, Hungary; http://quantum.ttk.pte.hu/~wigner/proceedings/papers/w73.pdf
[5] G. Van Hooydonk, Eur. Phys. J D 32, 299 (2005)
[6] G. Van Hooydonk, physics/0505074 (2005)

Guido van Hooydonk | alfa
Further information:
http://www.ugent.be

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>