Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny superconductors withstand stronger magnetic fields

07.02.2005


Ultrathin superconducting wires can withstand stronger magnetic fields than larger wires made from the same material, researchers now report. This finding may be useful for technologies that employ superconducting magnets, such as magnetic resonance imaging.

As described in the Jan. 14 issue of the journal Physical Review Letters, researchers at the University of Illinois at Urbana-Champaign have created high-quality superconducting wires with molecular dimensions, and measured their behavior in magnetic fields of various strengths. The observational results have confirmed that theories developed for bulk superconductors also apply to molecular-scale superconductors. "Our experimental results show an excellent agreement with the theory of pair-breaking perturbations, even at high magnetic fields," said Alexey Bezryadin, a professor of physics at Illinois. "The theory takes into account both spin and orbital contributions."

To study this phenomenon, the researchers began by placing a single-wall carbon nanotube across a narrow trench (about 100 nanometers wide) etched in the surface of a silicon wafer. The nanotube was then coated with a thin film of superconducting material (molybdenum-germanium), chilled below its critical temperature, and its properties measured in the presence of a magnetic field. "Usually, when you apply a magnetic field to a superconductor, the field suppresses or even destroys the superconductivity," Bezryadin said. "The magnetic field pulls apart the two electrons forming Cooper pairs and also rotates their spins. As the superconductor becomes smaller, however, the destructive effects of the magnetic field become weaker."



The magnetic field showed a remarkably weak effect on nanowires, the researchers report. Both the orbital and the spin pair-breaking effects were strongly suppressed in the nanowires. The orbital effect was weak because of the small dimensions of the wire (about 10 nanometers in diameter) and the spin effect was weakened by spin-orbit interactions. "One should not set a goal of reducing the wire’s diameter indefinitely, however," Bezryadin said. "As the diameter is decreased, disorder and boundary effects become more and more important. These factors also weaken superconductivity."

In fact, the researchers’ results show that thin wires do not really have zero resistance, as bulk samples do. They also show that the thinner the wire the higher its electrical resistance is.

Because nanoscale superconductors don’t repel magnetic fields, they could prove useful in a variety of superconducting applications. By incorporating nanowires as filaments in bigger superconducting wires, for example, more current could be carried without being destroyed by a magnetic field. "Again, one needs to optimize the diameters of the wires in order to produce cables with the highest ability to carry strong currents and withstand strong magnetic fields," Bezryadin said. "The nanowire should not be too thick, in order to be less sensitive to magnetic fields; but it also should not be too thin, in order to be fully superconducting. A correct balance should be achieved."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>