Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nano surfaces could slash cost of solar energy


Nanotechnologies which can artificially change the optical properties of materials to allow light to be trapped in solar cells could greatly reduce the cost of solar energy.

Research being carried out by the School of Electronics and Computer Science (ECS) at the University of Southampton is focusing on nanopatterning as the way to design effective solar panels. ‘By drawing features that are much smaller than the wavelength of light, photons can be confused into doing things they normally wouldn’t do,’ says Dr Darren Bagnall, of the School of Electronics and Computer Science. ‘By creating diffractive nanostructured arrays on the surface of solar cells we ensure that optical asymmetries are created that prevent light from escaping the solar cells.’

According to Dr Bagnall the light-trapping technologies could reduce the thickness of semiconductor materials needed in solar panels, and this would directly reduce the cost. The first challenge is to prove that the technology works in practice, the second key challenge will be to develop cost effective ways to produce nanopatterned layers.

The ECS approach is being applied to the £4.5M ‘Photovoltaic Materials for the 21st Century’ project which is funded by the Engineering and Physical Sciences Research Council (EPSRC). Other university partners in this project are Durham, Bangor, Northumbria, Bath and Loughborough. They have teamed up with industrial partners to develop solar cells which will make it possible for manufacturers to slash the cost of solar energy by half.

Dr Bagnall comments: ‘We have already shown that we can use arrays of chiral nanostructures, such as swastikas, to change the polarisation of light, now we want to apply the same technology to photovoltaics.’

Joyce Lewis | alfa
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>