Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini scientist sees evidence that Saturn’s outer rings could be disappearing

20.12.2004


A massive eruption of atomic oxygen from Saturn’s outer rings, seen by Cassini’s ultraviolet camera as the spacecraft neared its destination, may be an indication that the planet’s wispy E ring is eroding so fast that it could disappear within 100 million years if not replenished.



Cassini’s Ultraviolet Imaging Spectrograph (UVIS) detected the oxygen atoms spewing into a huge cloud on the dark side of Saturn’s rings as Cassini prepared to enter orbit around Saturn in January 2004, said Donald Shemansky, professor of aerospace and mechanical engineering in the University of Southern California Viterbi School of Engineering and a co-investigator on the Cassini ultraviolet imaging team. Data indicated that about 275 million pounds (125 million kilograms) of oxygen was abruptly released in a short period of time. "This was our first surprise in the ultraviolet," said Shemansky, who will analyze ultraviolet data during Cassini’s four-year tour of Saturn and its rings with Janet Hallett, a postdoctoral aerospace research associate in the USC Viterbi School.

"We aren’t sure yet whether this was a transient event or part of a routine recycling process in Saturn’s magnetosphere," he said. "Right now scientists are speculating that the oxygen eruption may have been caused by a collision of ice particles from the planet’s distant E ring with material in one of the main ring systems, A, B or C. Or it could have been a meteorite collision or an eruption of icy slush on Enceladus, a moon that orbits in the E ring."


Shemansky and the 16-member Cassini ultraviolet imaging team reported their findings in the Dec. 16, 2004 issue of Science Express (see http://www.sciencexpress.org magazine).

Despite Saturn’s placid appearance from Earth, the planet is anything but that. The first detailed UV images from the Cassini mission show that Saturn commands a dynamic world of complex, braided ice rings, cannibalistic moons, 1,100 mile-per-hour planetary winds and electrifying auroral displays high in the night skies.

Saturn, its moons and highly structured rings live inside a huge cavity in the solar wind created by the planet’s strong magnetic field. The magnetosphere is a bubble of particles including electrons, various species of ions, neutral atoms and molecules, several populations of very energetic charged particles like those found in Earth’s Van Allen Belts, and charged dust grains. These ionized (electrically charged) gases are called plasmas. However, unlike Jupiter’s magnetosphere, Shemansky said Saturn’s magnetic cocoon, which is smaller, is filled primarily with neutral gas rather than ions.

"Saturn’s magnetosphere is turning out to be very different from Jupiter’s," he said. "It’s dominated by neutral gas and water-rich ingredients produced by its rings, as icy moon debris collides, or by the more energetic collisions of incoming meteorites. It doesn’t have nearly as many charged particles, and many of them are absorbed by the rings, so the plasma processes we are observing are entirely different."

Two months after his initial observations, Shemansky and his ultraviolet team reported that the large cloud of escaping oxygen atoms had dissipated just as rapidly as it had appeared. Shemansky discounted theories that the rapid loss of material could be explained by "satellite sweeping," a process whereby tiny shepherding moons gobble up debris or deflect it as they clean out gaps between the rings. "The rate at which we saw material escaping from Saturn’s outer rings implies that mass equivalent to the entire E ring, even including larger fragments and parent bodies, would be consumed in a period of about 100 million years if no replenishment processes are at work," he said.

The rings of gas giants are made up of rocky debris from moons that have been torn apart by tidal waves or by an asteroid or comet collision during heavy bombardment periods. Rings are considered ephemeral and thought to disappear over time spans of billions of years. But Saturn’s colorful rings appear to be younger. Scientists think the rings are much younger than the planet itself – perhaps only 100 million years old – which is young in cosmological time. They also suspect that Saturn has had several ring systems in its history, although they have never had direct evidence on which to base their assumptions.

"These observations are a first in solar system exploration," Shemansky said. "We have direct evidence now that the rings are made up of pure ice and that they are shaped by processes that happen fast," he added. "They aren’t the same processes that shaped our solar system 4.5 billion years ago. "Given the fact that the outer rings are present at this time means that the system is being replenished by interactive plasma processes," Shemansky continued. "Clearly, the fact that something is eating up micron-sized grains in the outer ring zones at a high rate tells us that some sort of recycling process must be going on to rebuild them."

Cassini’s UV imaging spectrograph has made other important observations. In the ultraviolet, scientists were able to see dust on the rings. Data showed variations in the amount of water-ice contained in the surfaces of ring particles, suggesting that darkened portions had been dusted with powder from pulverized moons or incoming meteoroids.

The Cassini UVIS team also obtained ultraviolet images of Phoebe, Saturn’s most distant large moon, during the inbound flight to Saturn. Data showed the absorption lines of water-ice on Phoebe’s dark surface, which gave scientists more clues about its origins.

The only moon in the Saturnian system to orbit in a retrograde, or backward, direction, Phoebe is similar to a common C-type carbonaceous asteroid. Scientists theorize that it was flung out of the Kuiper Belt, a region well beyond Neptune’s orbit where thousands of small, icy comets reside, and sucked up by Saturn’s strong gravitational field, but no one is absolutely sure of its origin.

The Cassini-Huygens spacecraft and science instruments are part of an international mission by NASA, the European Space Agency and the Italian Space Agency to explore Saturn and its many moons and rings.

Diane Ainsworth | EurekAlert!
Further information:
http://www.usc.edu

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>