Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini scientist sees evidence that Saturn’s outer rings could be disappearing

20.12.2004


A massive eruption of atomic oxygen from Saturn’s outer rings, seen by Cassini’s ultraviolet camera as the spacecraft neared its destination, may be an indication that the planet’s wispy E ring is eroding so fast that it could disappear within 100 million years if not replenished.



Cassini’s Ultraviolet Imaging Spectrograph (UVIS) detected the oxygen atoms spewing into a huge cloud on the dark side of Saturn’s rings as Cassini prepared to enter orbit around Saturn in January 2004, said Donald Shemansky, professor of aerospace and mechanical engineering in the University of Southern California Viterbi School of Engineering and a co-investigator on the Cassini ultraviolet imaging team. Data indicated that about 275 million pounds (125 million kilograms) of oxygen was abruptly released in a short period of time. "This was our first surprise in the ultraviolet," said Shemansky, who will analyze ultraviolet data during Cassini’s four-year tour of Saturn and its rings with Janet Hallett, a postdoctoral aerospace research associate in the USC Viterbi School.

"We aren’t sure yet whether this was a transient event or part of a routine recycling process in Saturn’s magnetosphere," he said. "Right now scientists are speculating that the oxygen eruption may have been caused by a collision of ice particles from the planet’s distant E ring with material in one of the main ring systems, A, B or C. Or it could have been a meteorite collision or an eruption of icy slush on Enceladus, a moon that orbits in the E ring."


Shemansky and the 16-member Cassini ultraviolet imaging team reported their findings in the Dec. 16, 2004 issue of Science Express (see http://www.sciencexpress.org magazine).

Despite Saturn’s placid appearance from Earth, the planet is anything but that. The first detailed UV images from the Cassini mission show that Saturn commands a dynamic world of complex, braided ice rings, cannibalistic moons, 1,100 mile-per-hour planetary winds and electrifying auroral displays high in the night skies.

Saturn, its moons and highly structured rings live inside a huge cavity in the solar wind created by the planet’s strong magnetic field. The magnetosphere is a bubble of particles including electrons, various species of ions, neutral atoms and molecules, several populations of very energetic charged particles like those found in Earth’s Van Allen Belts, and charged dust grains. These ionized (electrically charged) gases are called plasmas. However, unlike Jupiter’s magnetosphere, Shemansky said Saturn’s magnetic cocoon, which is smaller, is filled primarily with neutral gas rather than ions.

"Saturn’s magnetosphere is turning out to be very different from Jupiter’s," he said. "It’s dominated by neutral gas and water-rich ingredients produced by its rings, as icy moon debris collides, or by the more energetic collisions of incoming meteorites. It doesn’t have nearly as many charged particles, and many of them are absorbed by the rings, so the plasma processes we are observing are entirely different."

Two months after his initial observations, Shemansky and his ultraviolet team reported that the large cloud of escaping oxygen atoms had dissipated just as rapidly as it had appeared. Shemansky discounted theories that the rapid loss of material could be explained by "satellite sweeping," a process whereby tiny shepherding moons gobble up debris or deflect it as they clean out gaps between the rings. "The rate at which we saw material escaping from Saturn’s outer rings implies that mass equivalent to the entire E ring, even including larger fragments and parent bodies, would be consumed in a period of about 100 million years if no replenishment processes are at work," he said.

The rings of gas giants are made up of rocky debris from moons that have been torn apart by tidal waves or by an asteroid or comet collision during heavy bombardment periods. Rings are considered ephemeral and thought to disappear over time spans of billions of years. But Saturn’s colorful rings appear to be younger. Scientists think the rings are much younger than the planet itself – perhaps only 100 million years old – which is young in cosmological time. They also suspect that Saturn has had several ring systems in its history, although they have never had direct evidence on which to base their assumptions.

"These observations are a first in solar system exploration," Shemansky said. "We have direct evidence now that the rings are made up of pure ice and that they are shaped by processes that happen fast," he added. "They aren’t the same processes that shaped our solar system 4.5 billion years ago. "Given the fact that the outer rings are present at this time means that the system is being replenished by interactive plasma processes," Shemansky continued. "Clearly, the fact that something is eating up micron-sized grains in the outer ring zones at a high rate tells us that some sort of recycling process must be going on to rebuild them."

Cassini’s UV imaging spectrograph has made other important observations. In the ultraviolet, scientists were able to see dust on the rings. Data showed variations in the amount of water-ice contained in the surfaces of ring particles, suggesting that darkened portions had been dusted with powder from pulverized moons or incoming meteoroids.

The Cassini UVIS team also obtained ultraviolet images of Phoebe, Saturn’s most distant large moon, during the inbound flight to Saturn. Data showed the absorption lines of water-ice on Phoebe’s dark surface, which gave scientists more clues about its origins.

The only moon in the Saturnian system to orbit in a retrograde, or backward, direction, Phoebe is similar to a common C-type carbonaceous asteroid. Scientists theorize that it was flung out of the Kuiper Belt, a region well beyond Neptune’s orbit where thousands of small, icy comets reside, and sucked up by Saturn’s strong gravitational field, but no one is absolutely sure of its origin.

The Cassini-Huygens spacecraft and science instruments are part of an international mission by NASA, the European Space Agency and the Italian Space Agency to explore Saturn and its many moons and rings.

Diane Ainsworth | EurekAlert!
Further information:
http://www.usc.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>