Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Paving the way for pioneers


Ming Zhang’s cosmic radiation research takes first step in missions to Mars, moon base

As American space exploration fulfills promises for a new era of long-term moon colonization and a mission to Mars, the research of Florida Institute of Technology space physicist Ming Zhang will become more important to the lives of each and every astronaut. While his research on cosmic radiation has its roots in pure science, the practical applications of what he has learned about space weather are matters of life and death.

With more than $1 million in NASA funding, Zhang is researching cosmic and energetic solar radiation, seeking how the two space weather components affect human beings, both as space travelers and as the end-user of satellite technology. "America wants to send humans to Mars and to colonize the moon," said Zhang. "But the natural radiation that exists in space is a big concern since it will prove toxic over time and can reach lethal amounts a few times a decade."

In the vacuum of space, energetic particle radiation from the galaxy and from our sun varies in intensity and energy. This variation is in concert with the 11-year solar cycle. Zhang’s research is determining how and why the solar cycle changes the energetic particle fluxes in our geospace environment and throughout the solar system. For Zhang and his fellow space physicists, this research provides clues into the structure of our galaxy, the origin of all galaxies, as well as the structure and dynamics of our sun. For our astronauts, this knowledge may one day prove life saving.

"We know that the sun has an 11-year cycle from active to dormant; these are the solar seasons" Zhang said. "When the sun is most active, a burst of solar radiation could kill an unprotected astronaut very quickly or cripple a spacecraft. In a radiation burst, the effect on the body would be much like the radiation from a nearby nuclear explosion."

NASA’s interplanetary travel itineraries, however, cannot be limited to the only periods when the sun is dormant. "Cosmic rays coming from outside the solar system are high-energy charged particles, many times more damaging than an X-ray. These particles are most likely produced by supernovae in the galaxy," Zhang said. "These rays can penetrate the human body easily and mutate or kill DNA in the cells along their paths. The mutated DNA can lead to cancer and other alteration of the cellular structures."

The catch-22 is that an active sun produces a more chaotic solar wind, reducing the intensity of cosmic rays and thus protecting astronauts. When the sun is dormant, cosmic radiation is much higher. "For the astronaut, it really is a case of picking your poison," Zhang said. "There is either a period of higher intensity cosmic rays around solar minimum or a high probability of large radiation burst during solar maximum.

NASA was aware of the radiation dangers when it first planned the original missions to the moon. At the time, however, they were less concerned about cosmic radiation because the missions were short. Scientists are just now learning how dangerous cosmic rays are to people and satellites.

Zhang’s research is also helping scientists understand how to predict space weather, particularly when and where to expect large solar bursts.

"By forecasting space weather, we can protect newer satellites, which have smaller electronics that are more susceptible to high-energy radiation. We cam also protect people on Earth by advising airlines to divert flights away from the polar caps," Zhang said. While Earth’s magnetic field protects us from both cosmic and solar radiation, penetration is easiest at the polar caps.

As Zhang continues his space weather research, he and his fellow space physicists at Florida Tech’s Geospace Physics Laboratory (GPL), Drs. Hamid Rassoul, Joseph Dwyer, Brian Ball, and Gang Qin, are unlocking secrets to the universe that were beyond the scope of speculation a few decades ago.

"We know that solar activity modulates cosmic rays, even to the far boundary of the solar system," Rassoul said. "Indeed, using recent observations from NASA’s old work horses, the Voyager 1 and 2 spacecraft, Zhang and Ball found that the intensity of cosmic rays at ~90 AU is still strongly modulated by solar activity. What we are trying to understand is how these changes occur, and what they mean for us and our space investments."

Jay Wilson | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>