Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glass semiconductor softens with low-power laser, then re-hardens

08.09.2004


Scientists at Ohio State University have found that a special type of glass that is finding use in the electronics industry softens when exposed to very low-level laser light, and hardens back into its original condition when the light is switched off.

The discovery -- made by accident as physicists were trying to study properties of the material -- may one day enable new uses for the glass. Ratnasingham Sooryakumar said that he and former doctoral student Jared Gump thought they were working with a bad batch of germanium-selenium glass when Gump was testing the material’s hardness in the laboratory and couldn’t reproduce his results. “Every day he got a different result,” recalled Sooryakumar, a professor of physics at Ohio State. “It took us a while to realize that the material was fine, it was just very sensitive to light.”

They finally traced their strange results to the very low-power laser light that they were shining on the glass. Whether the laser was set to exactly the same power every time shouldn’t have affected the experiment, but it did. The higher the laser power, the softer the glass. In fact, with the laser set to a mere 6 milliwatts –- six thousandths of a Watt -- the material became 50 percent softer than usual. “Normally, you’d have to almost melt the glass to get it that soft, but here we were doing it with a light source that was essentially a laser pointer, and with no heat at all,” said Sooryakumar. “And what’s really important is that the whole effect is reversible.”



In the journal Physical Review Letters, the physicists reported that the glass always hardened back into its original condition. Even the latticework of atoms that made up its structure appeared unchanged afterward.

Sooryakumar and Gump co-authored the paper with Ilya Finkler, a former undergraduate student majoring in physics and mathematics, and Hua Xia, a former postdoctoral associate, both of Ohio State; Wayne Bresser, an assistant professor of physics at Northern Kentucky University; and Punit Boolchand, professor of electrical and computer engineering and computer science at the University of Cincinnati. Gump is now a scientist at the Naval Surface Warfare Center in Indian Head, MD, Finkler is a graduate student studying physics at Harvard University, and Xia is an engineer at General Electric Corp.

The glass is part of a family of glass semiconductors that are often used in electronics for DVDs and information storage technologies. Germanium is hard and selenium soft. A combination of 80 percent selenium and 20 percent germanium is the “magic formula” where the material is neither too hard nor too soft, and well suited for forming a glass. Scientists call this point the rigidity transition.

Scientists are very interested in studying why the 80-20 ratio works, and what happens to the mechanical strength of the glass during the rigidity transition. To answer those questions, Sooryakumar and his colleagues tried to examine the hardness of the material in a range of selenium-germanium combinations around the transition point.

One way to determine the hardness of a material is to measure the speed of sound waves traveling through it; sound waves travel faster through harder materials. The physicists bounced a low-powered red laser beam off the sound waves to measure the speed –- a technique similar to how radar detects the speed of a moving car. The laser beam was only about as wide as a human hair, and used about as much power as a laser pointer.

That’s when they noticed the softening effect. “It was as if the radar beam was influencing the speed of the car,” Sooryakumar said.

For compositions closest to the transition point, the effect was greatest: the material softened by 50 percent, from a hardness of 26 to 13 gigapascals as the laser power increased from 2 to 6 milliwatts. Hardness is a measure of how much pressure a material can withstand, and diamond rates at 100 gigapascals.(A gigapascal is roughly 10,000 times the pressure of earth’s atmosphere at sea level.)

Though the physicists don’t yet have a complete picture of why the material softened, Sooryakumar suspects that the answer has to do with the nature of the rigidity transition itself. Stiff materials normally carry a certain amount of stress in them, because the stacked molecules support each other like steel girders in a building. The transition point is special, Sooryakumar noted, because the molecules are arranged in just the right way to lower stress on the structure to a minimum.

Here’s why the physicists think the glass softened: When particles of light, called photons, hit the glass, they knocked some of the electrons that connect molecules in the latticework out of place. Such a change in bonding occurs most easily under conditions of minimum stress. With fewer supports holding up the structure, the glass became less stiff. Then, when the light was switched off, the electrons swung back into position, and the glass became stiff again.

Sooryakumar speculated that these types of glasses could have potential applications in re-writable computer memory. But right now, he and his colleagues are probing further to understand the rigidity transition and the remarkable response to light at this composition. They want to study what happens if the material is exposed to laser light of different color and higher power, and test different glasses besides selenium-germanium.

This work was sponsored by the National Science Foundation.

Ratnasingham Sooryakumar | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>