Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists image tooth decay in the 3rd dimension

07.09.2004


A team of scientists from Glasgow today revealed a new technique that will allow dentists to detect and study the tell-tale signs of tooth decay before too much damage is done.



Speaking at one of the opening sessions at the Institute of Physics conference Photon 04 in Glasgow, Simon Poland outlined a new way of making a detailed 3D picture of a diseased area of a tooth, which could be done while a patient waits. Simon Poland, from the Institute of Photonics at the University of Strathclyde, working with colleagues at the Glasgow Dental Hospital, and the University of Dundee, has used an existing imaging technique which creates optical sections (individual images or slices through a 3D object) using structured light (a beam of light in a grid pattern). They applied this technique to human teeth for the first time and succeeded in producing a 3D image a diseased area of a tooth.

The scientists took a tooth with an area of known decay and shone a beam of structured infra-red light (of around 880nm) using a halogen lamp. They took sets of 3 images at different spatial phases and combined them using standard image processing techniques. This produces an optically sectioned image - many image ’slices,’ which are put together to form a whole 3D image.


Speaking at Photon 04, the UK’s premier conference for photonics and optics, Simon Poland said: "We’ve successfully produced a 3D image of a region of tooth decay which will allow dentists to study the process of decay, caused by food and drink, in great detail and in real time, as the disease occurs, rather than after the fact."

He continued: "The technique is fast and simple and we could attach an endoscope to our kit to allow dentists to use the device in the surgery. They would shine the endoscope at the tooth they wanted to examine, and by using high-speed CCD camera, the image could be delivered very quickly, in around twenty minutes or so."

"Dentists usually detect disease by scraping and looking, or by taking X-rays but these methods only catch decay once it’s already quite serious. Some of the more complex techniques currently available only give dentists data readings. The advantage of a detailed 3D image like the one we’ve created is that it can reveal decay in its earliest stages, and lets the dentist take measures to stop or repair the damage before it gets too bad. It gives them a powerful diagnostic tool, and tells them about the size and shape of the disease, and its progression."

Tooth decay is caused by acid produced when the sugar in plaque (bits of food and drink mixed with bacteria) breaks down. Fizzy drinks are particularly bad for teeth because they contain acid which begins to cause decay straight away. This leads to the break-down of the enamel (the protective surface coating) and mineral loss occurs. At this stage, re-mineralization is possible and is helped by good dental hygiene ¡V regular cleaning with toothpaste and fluorine mouthwash. The technique developed by Simon Poland and his colleagues could help dentists catch disease early in the process, before too much mineral loss occurs, when the possibility of re-mineralisation still exists. If mineral loss continues unchecked, cavities begin to form and grow, then fillings are needed.

The team now intend to use the technique to study teeth in different stages of tooth decay and to devise an easy to use kit for use in dental practices.

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>