Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists image tooth decay in the 3rd dimension

07.09.2004


A team of scientists from Glasgow today revealed a new technique that will allow dentists to detect and study the tell-tale signs of tooth decay before too much damage is done.



Speaking at one of the opening sessions at the Institute of Physics conference Photon 04 in Glasgow, Simon Poland outlined a new way of making a detailed 3D picture of a diseased area of a tooth, which could be done while a patient waits. Simon Poland, from the Institute of Photonics at the University of Strathclyde, working with colleagues at the Glasgow Dental Hospital, and the University of Dundee, has used an existing imaging technique which creates optical sections (individual images or slices through a 3D object) using structured light (a beam of light in a grid pattern). They applied this technique to human teeth for the first time and succeeded in producing a 3D image a diseased area of a tooth.

The scientists took a tooth with an area of known decay and shone a beam of structured infra-red light (of around 880nm) using a halogen lamp. They took sets of 3 images at different spatial phases and combined them using standard image processing techniques. This produces an optically sectioned image - many image ’slices,’ which are put together to form a whole 3D image.


Speaking at Photon 04, the UK’s premier conference for photonics and optics, Simon Poland said: "We’ve successfully produced a 3D image of a region of tooth decay which will allow dentists to study the process of decay, caused by food and drink, in great detail and in real time, as the disease occurs, rather than after the fact."

He continued: "The technique is fast and simple and we could attach an endoscope to our kit to allow dentists to use the device in the surgery. They would shine the endoscope at the tooth they wanted to examine, and by using high-speed CCD camera, the image could be delivered very quickly, in around twenty minutes or so."

"Dentists usually detect disease by scraping and looking, or by taking X-rays but these methods only catch decay once it’s already quite serious. Some of the more complex techniques currently available only give dentists data readings. The advantage of a detailed 3D image like the one we’ve created is that it can reveal decay in its earliest stages, and lets the dentist take measures to stop or repair the damage before it gets too bad. It gives them a powerful diagnostic tool, and tells them about the size and shape of the disease, and its progression."

Tooth decay is caused by acid produced when the sugar in plaque (bits of food and drink mixed with bacteria) breaks down. Fizzy drinks are particularly bad for teeth because they contain acid which begins to cause decay straight away. This leads to the break-down of the enamel (the protective surface coating) and mineral loss occurs. At this stage, re-mineralization is possible and is helped by good dental hygiene ¡V regular cleaning with toothpaste and fluorine mouthwash. The technique developed by Simon Poland and his colleagues could help dentists catch disease early in the process, before too much mineral loss occurs, when the possibility of re-mineralisation still exists. If mineral loss continues unchecked, cavities begin to form and grow, then fillings are needed.

The team now intend to use the technique to study teeth in different stages of tooth decay and to devise an easy to use kit for use in dental practices.

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>