Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quark study breaks logjam between theory, experiment

30.08.2004


University of Chicago scientists have solved a 20-year-old puzzle in particle physics using data from an experiment conducted for an entirely different purpose.



Physicists had long known that something was amiss regarding their understanding of how some quarks interact in the beta decay of particles, a common form of radioactivity. Either dozens of experiments conducted over a period of more than three decades were wrong, or the scientists’ theories were. Now, in a set of four papers, University of Chicago scientists have demonstrated that the theories are correct.

"Our result is quite consistent with theoretical predictions," said Edward Blucher, Associate Professor in Physics at the University of Chicago. Blucher and Richard Kessler, also of the University of Chicago, and Sasha Glazov, who recently moved from Chicago to DESY, the German particle physics laboratory, authored the three papers, which were signed by their 55 fellow members of the Kaons at the Tevatron collaboration at Fermi National Accelerator Laboratory. The papers have been accepted for publication in Physical Review D and Physical Review Letters.


Blucher and his colleagues based their finding on data collected during an experiment at Fermi National Accelerator Laboratory in 1997. "Our measurements are significantly more precise than the average of all measurements that have been done before," Blucher said.

The Fermilab experiment was designed to search for a phenomenon called CP violation, a process that causes nature to produce more matter than antimatter. The team, then led by Bruce Winstein, the Samuel K. Allison Distinguished Service Professor in Physics at the University of Chicago, announced making the definitive observation of a new type of CP violation in 1999. The only other observation of CP violation prior to that came in 1964, in an experiment that earned the 1980 Nobel Prize in physics for James Cronin and Val Fitch.

But it turned out that the design of the CP violation experiment directly benefited this new thrust of research. "It’s a tour de force and it reflects the enormous care with which Ed Blucher and his colleagues created this data," said Cronin, the University Professor Emeritus in Physics at the University of Chicago. "Everything fits together in a really perfect way."

Winstein, meanwhile, called the work "quite a bold set of papers" from Blucher, Kessler and Glazov. "These three guys just stuck to it and were insistent on trying to understand every little effect. What they did is something I’m quite proud of," Winstein said.

The project re-enforces scientists’ understanding of the weak nuclear force, one of the four fundamental forces of nature. It governs the emission of radioactive beta particles and is the force that powers the sun. In previous experiments, physicists measured how up quarks were coupled to down quarks and strange quarks. In the precise accounting system of particle physics, the way these quarks couple to one another should add up to one. "When you added up the numbers, you came up a little bit short of what you expected from theory," Blucher said.

Experiment 865 at Brookhaven National Laboratory last year became the first to suggest otherwise. The Brookhaven data, based on a study of charged kaons, conflicted with previous experiments. "Now we’ve done similar, much more complete measurements on the neutral kaon and found a similar shift," Blucher said.

Strange quarks are a component of the neutral kaon particles that were produced in the Fermilab experiment. Thus Blucher’s team was able to study one of the critical elements in question-how up quarks couple to strange quarks-by observing how one form decays into the other. The team’s work marked the first time that all relevant measurements had been made together in one modern, statistically rigorous experiment. The measurements revealed that the coupling strength of strange quarks to up quarks was 3 percent higher than what had been determined by previous experiments.

The new results are approximately twice as accurate as previous experiments partly because of the rigorous computer simulations the team members put together to test the performance of their particle detector. "We’ve been able to take advantage of all the work that we’ve done over several years to correct all of the small flaws that were found in how the detector was simulated," Blucher said.

During the course of their research, Blucher and his colleagues discovered that a one of the theoretical components their measurements depended upon was incomplete. They took the problem to Jonathan Rosner, a Professor in Physics at Chicago. Soon, one of his graduate students, Troy Andre, began performing the calculations Blucher needed to bolster the validity of his measurements.

Andre’s paper will be published in Physical Review D. That paper, together with the other three, add up to a fairly big change in the particle physics world. "I can’t remember a case in the last 10 to 20 years where quantities that had been measured and understood for that long had shifted by such a large amount," Blucher said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>