Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quark study breaks logjam between theory, experiment


University of Chicago scientists have solved a 20-year-old puzzle in particle physics using data from an experiment conducted for an entirely different purpose.

Physicists had long known that something was amiss regarding their understanding of how some quarks interact in the beta decay of particles, a common form of radioactivity. Either dozens of experiments conducted over a period of more than three decades were wrong, or the scientists’ theories were. Now, in a set of four papers, University of Chicago scientists have demonstrated that the theories are correct.

"Our result is quite consistent with theoretical predictions," said Edward Blucher, Associate Professor in Physics at the University of Chicago. Blucher and Richard Kessler, also of the University of Chicago, and Sasha Glazov, who recently moved from Chicago to DESY, the German particle physics laboratory, authored the three papers, which were signed by their 55 fellow members of the Kaons at the Tevatron collaboration at Fermi National Accelerator Laboratory. The papers have been accepted for publication in Physical Review D and Physical Review Letters.

Blucher and his colleagues based their finding on data collected during an experiment at Fermi National Accelerator Laboratory in 1997. "Our measurements are significantly more precise than the average of all measurements that have been done before," Blucher said.

The Fermilab experiment was designed to search for a phenomenon called CP violation, a process that causes nature to produce more matter than antimatter. The team, then led by Bruce Winstein, the Samuel K. Allison Distinguished Service Professor in Physics at the University of Chicago, announced making the definitive observation of a new type of CP violation in 1999. The only other observation of CP violation prior to that came in 1964, in an experiment that earned the 1980 Nobel Prize in physics for James Cronin and Val Fitch.

But it turned out that the design of the CP violation experiment directly benefited this new thrust of research. "It’s a tour de force and it reflects the enormous care with which Ed Blucher and his colleagues created this data," said Cronin, the University Professor Emeritus in Physics at the University of Chicago. "Everything fits together in a really perfect way."

Winstein, meanwhile, called the work "quite a bold set of papers" from Blucher, Kessler and Glazov. "These three guys just stuck to it and were insistent on trying to understand every little effect. What they did is something I’m quite proud of," Winstein said.

The project re-enforces scientists’ understanding of the weak nuclear force, one of the four fundamental forces of nature. It governs the emission of radioactive beta particles and is the force that powers the sun. In previous experiments, physicists measured how up quarks were coupled to down quarks and strange quarks. In the precise accounting system of particle physics, the way these quarks couple to one another should add up to one. "When you added up the numbers, you came up a little bit short of what you expected from theory," Blucher said.

Experiment 865 at Brookhaven National Laboratory last year became the first to suggest otherwise. The Brookhaven data, based on a study of charged kaons, conflicted with previous experiments. "Now we’ve done similar, much more complete measurements on the neutral kaon and found a similar shift," Blucher said.

Strange quarks are a component of the neutral kaon particles that were produced in the Fermilab experiment. Thus Blucher’s team was able to study one of the critical elements in question-how up quarks couple to strange quarks-by observing how one form decays into the other. The team’s work marked the first time that all relevant measurements had been made together in one modern, statistically rigorous experiment. The measurements revealed that the coupling strength of strange quarks to up quarks was 3 percent higher than what had been determined by previous experiments.

The new results are approximately twice as accurate as previous experiments partly because of the rigorous computer simulations the team members put together to test the performance of their particle detector. "We’ve been able to take advantage of all the work that we’ve done over several years to correct all of the small flaws that were found in how the detector was simulated," Blucher said.

During the course of their research, Blucher and his colleagues discovered that a one of the theoretical components their measurements depended upon was incomplete. They took the problem to Jonathan Rosner, a Professor in Physics at Chicago. Soon, one of his graduate students, Troy Andre, began performing the calculations Blucher needed to bolster the validity of his measurements.

Andre’s paper will be published in Physical Review D. That paper, together with the other three, add up to a fairly big change in the particle physics world. "I can’t remember a case in the last 10 to 20 years where quantities that had been measured and understood for that long had shifted by such a large amount," Blucher said.

Steve Koppes | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>