Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Production Of High-Fidelity Entangled Photons Exceeds 1 Million Per Second

16.07.2004


Like virtuosos tuning their violins, researchers at the University of Illinois at Urbana-Champaign have tuned their instruments and harmonized the production of entangled photons, pushing rates to more than 1 million pairs per second.

The brighter and purer entangled states could assist researchers in applications involving quantum information processing - such as quantum computation, teleportation and cryptography - and help scientists better understand the mysterious transition from quantum mechanics to classical physics.

"Entangled states are the quintessential feature of quantum mechanics," said Paul Kwiat, a John Bardeen Professor of Electrical and Computer Engineering and Physics at Illinois. "All the manifestations of quantum mechanics in the world around us arise from the basic but bizarre coupling that exists between entangled particles."



For example, the properties of entangled photons are inextricably linked to each other, even if the photons are located on opposite sides of the galaxy. To study this "correlation at a distance," Kwiat and graduate students Joseph Altepeter and Evan Jeffrey produce pairs of polarization-entangled photons by passing a laser pulse through two adjacent nonlinear crystals.

"You can think of polarization as the ’wiggle’ direction of the photon - either horizontal, vertical or diagonal," Kwiat said. "As soon as you determine the wiggle direction of one photon in an entangled pair, you immediately know the wiggle direction of the other photon, no matter how far apart they are."

A major production problem, however, is that entangled photons are emitted in many directions and with a wide range of polarization phase relationships, each acting like an individual singer in a large choir.

"Instead of hearing a soloist hit one note, we were hearing many choir members, some of whom were singing off-key," Kwiat said.

The trick was to come up with a way of tuning the system. "We found that we could pass the photons through another crystal - one that has a different phase profile - to compensate for the different phase relationships," Kwiat said. "The dissonance is corrected and the system becomes harmonized."

In the same manner as a corrector lens in a telescope removes chromatic aberration and improves image quality, the researchers’ special birefringent crystal removes distortions in the quality of the entanglement. "After the compensator crystal, the photons are all entangled in exactly the same way," Altepeter said. "We can open the iris and get more than 1 million useful pairs per second."

Ultrabright, ultrapure sources of entangled photons are essential for pursuing quantum computing and quantum networks, as a resource for teleportation in quantum communication, and for sending more information faster by means of quantum cryptography. High fidelity quantum states can also provide researchers with a clearer picture of how the universe works on a very fundamental level.

"Using a low-brightness source is like looking into the quantum world through a foggy window," Altepeter said. "With a bright, pure source, we have a very clear window that allows us to see phenomena we couldn’t see before."

The ultimate goal is to understand and develop an intuition for the quantum nature of reality, said Kwiat, who will report the team’s findings at the International Conference on Quantum Communication, Measurement and Computing, to be held July 25-29 in Glasgow, United Kingdom. "Higher production rates of nearly perfectly entangled photons will help us better understand the rules of the quantum universe, how to navigate that universe, and how to characterize it in a very precise way."

The work was funded by the National Science Foundation, the Army Research Office, and the Advanced Research and Development Activity.

James E. Kloeppel | UIUC News Bureau
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>