Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Production Of High-Fidelity Entangled Photons Exceeds 1 Million Per Second

16.07.2004


Like virtuosos tuning their violins, researchers at the University of Illinois at Urbana-Champaign have tuned their instruments and harmonized the production of entangled photons, pushing rates to more than 1 million pairs per second.

The brighter and purer entangled states could assist researchers in applications involving quantum information processing - such as quantum computation, teleportation and cryptography - and help scientists better understand the mysterious transition from quantum mechanics to classical physics.

"Entangled states are the quintessential feature of quantum mechanics," said Paul Kwiat, a John Bardeen Professor of Electrical and Computer Engineering and Physics at Illinois. "All the manifestations of quantum mechanics in the world around us arise from the basic but bizarre coupling that exists between entangled particles."



For example, the properties of entangled photons are inextricably linked to each other, even if the photons are located on opposite sides of the galaxy. To study this "correlation at a distance," Kwiat and graduate students Joseph Altepeter and Evan Jeffrey produce pairs of polarization-entangled photons by passing a laser pulse through two adjacent nonlinear crystals.

"You can think of polarization as the ’wiggle’ direction of the photon - either horizontal, vertical or diagonal," Kwiat said. "As soon as you determine the wiggle direction of one photon in an entangled pair, you immediately know the wiggle direction of the other photon, no matter how far apart they are."

A major production problem, however, is that entangled photons are emitted in many directions and with a wide range of polarization phase relationships, each acting like an individual singer in a large choir.

"Instead of hearing a soloist hit one note, we were hearing many choir members, some of whom were singing off-key," Kwiat said.

The trick was to come up with a way of tuning the system. "We found that we could pass the photons through another crystal - one that has a different phase profile - to compensate for the different phase relationships," Kwiat said. "The dissonance is corrected and the system becomes harmonized."

In the same manner as a corrector lens in a telescope removes chromatic aberration and improves image quality, the researchers’ special birefringent crystal removes distortions in the quality of the entanglement. "After the compensator crystal, the photons are all entangled in exactly the same way," Altepeter said. "We can open the iris and get more than 1 million useful pairs per second."

Ultrabright, ultrapure sources of entangled photons are essential for pursuing quantum computing and quantum networks, as a resource for teleportation in quantum communication, and for sending more information faster by means of quantum cryptography. High fidelity quantum states can also provide researchers with a clearer picture of how the universe works on a very fundamental level.

"Using a low-brightness source is like looking into the quantum world through a foggy window," Altepeter said. "With a bright, pure source, we have a very clear window that allows us to see phenomena we couldn’t see before."

The ultimate goal is to understand and develop an intuition for the quantum nature of reality, said Kwiat, who will report the team’s findings at the International Conference on Quantum Communication, Measurement and Computing, to be held July 25-29 in Glasgow, United Kingdom. "Higher production rates of nearly perfectly entangled photons will help us better understand the rules of the quantum universe, how to navigate that universe, and how to characterize it in a very precise way."

The work was funded by the National Science Foundation, the Army Research Office, and the Advanced Research and Development Activity.

James E. Kloeppel | UIUC News Bureau
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>