Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milky way churning out new stars at a furious pace

28.05.2004


Some of the first data from a new orbiting infrared telescope are revealing that the Milky Way - and by analogy galaxies in general - is making new stars at a much more prolific pace than astronomers imagined.


Caption: The nebula RCW49, shown in infrared light in this image from the Spitzer Space Telescope, is a nursery for newborn stars. Using NASA’s Spitzer Space Telescope, astronomers have found in RCW49 more than 300 newborn or ’protostars,’ all with circumstellar disks of dust and gas. The discovery reveals that galaxies make new stars at a much more prolific rate than previously imagined. The stelar disks of dust and gas not only feed material onto the growing new stars, but can be the raw material for new planetary systems.
Photo by: NASA/JPL-Caltech/University of Wisconsin-Madison



The findings from NASA’s Spitzer Space Telescope were announced today (May 27) at a NASA headquarters press briefing by Edward Churchwell, a University of Wisconsin-Madison astronomer and the leader of a team conducting the most detailed survey to date of our galaxy in infrared light.

Focusing the telescope on a compact cluster of stars at the heart of a distant nebula known as RCW49, Churchwell and his colleagues discovered more than 300 newly forming stars. Each of the stars, known to astronomers as protostars, has a swirling disk of circumstellar dust and creates ideal conditions for the formation of new solar systems.


"In this one small area, we have a stellar nursery like no one has ever seen before," says Churchwell, an expert on star formation. "The sheer number of objects is astounding, and may force us to rewrite our ideas of star formation and how much of it is going on in the Milky Way.

"I am dead sure there are many regions like this throughout the galaxy. It is not unique."

For years, astronomers have probed objects like the nebula RCW49, a thick, obscuring cocoon of dust and gas, with radio telescopes. Listening in, they have learned that these hidden pockets of space are the places where most of the new stars that populate a galaxy are born.

With the Spitzer Space Telescope, astronomers can now look deep inside these regions to directly observe star formation: "We can peel away the dust layers to see what is going on and we’re seeing things in incredible detail. This telescope is almost perfectly tuned to study star formation and it will provide us with a huge database of protostars. And this is what makes galaxies tick, these areas of massive star formation," Churchwell says.

Indeed, his team has been able to catalog not only a large number of protostars from this one small region of space, but also the spectrum of newborn stars’ various stages of early development.

"We’re finding stars at different points in their evolutionary history," Churchwell explains. "We hope to be able to fill out the entire early evolutionary sequence of a star’s development."

Of special interest to astronomers is the potential for protostars to form planetary systems. The stars are formed from large disks of cool dust and gas, known as accretion disks. The nascent stars grow as material spirals inward from the disk to the star.

The same disks, astronomers think, provide the raw material for planets. "Protostars, we believe, develop planetary systems from these accretion disks," Churchwell notes.

The Spitzer Space Telescope is the last of NASA’s Great Observatory Program. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., manages the telescope project.

The Great Observatory program, which also includes the Hubble Space Telescope, the Compton Gamma Ray Observatory and the Chandra X-ray Observatory, is designed to sample the cosmos across a wide portion of the electromagnetic spectrum.

The Spitzer Space Telescope was launched into an Earth-trailing heliocentric orbit in August of 2003.

Churchwell’s team, which uses the Infrared Array Camera, one of three scientific instruments aboard the telescope, is charged with creating an infrared mosaic of a swath of the inner Milky Way composed of 300,000 image frames of 1.2 second exposures each.

"We’re making a complete survey of the inner two-thirds of our galaxy," Churchwell explains. "We can’t survey the very center of the galaxy because it is too bright and would swamp our detectors."

When completed, the survey will provide a wealth of data from regions of space previously obscured by foreground clouds of dust and gas. There will be many more surprises, Churchwell says.

The data are being analyzed by a team of about 20 scientists in Madison and around the country who make up the GLIMPSE or Galactic Legacy Infrared Mid-Plain Survey Extraordinaire. The final data products will be archived and released to the astronomy community by the Spitzer Space Science Center in Pasadena, Calif.

Churchwell says the orbiting observatory is performing superbly. "From the perspective of the Infrared Array Camera, it’s almost picture perfect. The images are beautiful. It’s a real success story for NASA," he says.


Terry Devitt, (608) 262-8282, trdevitt@wisc.edu

CONTACT: Ed Churchwell, (608) 262-4909, churchwell@astro.wisc.edu; Barbara Whitney, (608) 263-0807, bwhitney@wisc.edu

Terry Devitt | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>