Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milky way churning out new stars at a furious pace

28.05.2004


Some of the first data from a new orbiting infrared telescope are revealing that the Milky Way - and by analogy galaxies in general - is making new stars at a much more prolific pace than astronomers imagined.


Caption: The nebula RCW49, shown in infrared light in this image from the Spitzer Space Telescope, is a nursery for newborn stars. Using NASA’s Spitzer Space Telescope, astronomers have found in RCW49 more than 300 newborn or ’protostars,’ all with circumstellar disks of dust and gas. The discovery reveals that galaxies make new stars at a much more prolific rate than previously imagined. The stelar disks of dust and gas not only feed material onto the growing new stars, but can be the raw material for new planetary systems.
Photo by: NASA/JPL-Caltech/University of Wisconsin-Madison



The findings from NASA’s Spitzer Space Telescope were announced today (May 27) at a NASA headquarters press briefing by Edward Churchwell, a University of Wisconsin-Madison astronomer and the leader of a team conducting the most detailed survey to date of our galaxy in infrared light.

Focusing the telescope on a compact cluster of stars at the heart of a distant nebula known as RCW49, Churchwell and his colleagues discovered more than 300 newly forming stars. Each of the stars, known to astronomers as protostars, has a swirling disk of circumstellar dust and creates ideal conditions for the formation of new solar systems.


"In this one small area, we have a stellar nursery like no one has ever seen before," says Churchwell, an expert on star formation. "The sheer number of objects is astounding, and may force us to rewrite our ideas of star formation and how much of it is going on in the Milky Way.

"I am dead sure there are many regions like this throughout the galaxy. It is not unique."

For years, astronomers have probed objects like the nebula RCW49, a thick, obscuring cocoon of dust and gas, with radio telescopes. Listening in, they have learned that these hidden pockets of space are the places where most of the new stars that populate a galaxy are born.

With the Spitzer Space Telescope, astronomers can now look deep inside these regions to directly observe star formation: "We can peel away the dust layers to see what is going on and we’re seeing things in incredible detail. This telescope is almost perfectly tuned to study star formation and it will provide us with a huge database of protostars. And this is what makes galaxies tick, these areas of massive star formation," Churchwell says.

Indeed, his team has been able to catalog not only a large number of protostars from this one small region of space, but also the spectrum of newborn stars’ various stages of early development.

"We’re finding stars at different points in their evolutionary history," Churchwell explains. "We hope to be able to fill out the entire early evolutionary sequence of a star’s development."

Of special interest to astronomers is the potential for protostars to form planetary systems. The stars are formed from large disks of cool dust and gas, known as accretion disks. The nascent stars grow as material spirals inward from the disk to the star.

The same disks, astronomers think, provide the raw material for planets. "Protostars, we believe, develop planetary systems from these accretion disks," Churchwell notes.

The Spitzer Space Telescope is the last of NASA’s Great Observatory Program. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., manages the telescope project.

The Great Observatory program, which also includes the Hubble Space Telescope, the Compton Gamma Ray Observatory and the Chandra X-ray Observatory, is designed to sample the cosmos across a wide portion of the electromagnetic spectrum.

The Spitzer Space Telescope was launched into an Earth-trailing heliocentric orbit in August of 2003.

Churchwell’s team, which uses the Infrared Array Camera, one of three scientific instruments aboard the telescope, is charged with creating an infrared mosaic of a swath of the inner Milky Way composed of 300,000 image frames of 1.2 second exposures each.

"We’re making a complete survey of the inner two-thirds of our galaxy," Churchwell explains. "We can’t survey the very center of the galaxy because it is too bright and would swamp our detectors."

When completed, the survey will provide a wealth of data from regions of space previously obscured by foreground clouds of dust and gas. There will be many more surprises, Churchwell says.

The data are being analyzed by a team of about 20 scientists in Madison and around the country who make up the GLIMPSE or Galactic Legacy Infrared Mid-Plain Survey Extraordinaire. The final data products will be archived and released to the astronomy community by the Spitzer Space Science Center in Pasadena, Calif.

Churchwell says the orbiting observatory is performing superbly. "From the perspective of the Infrared Array Camera, it’s almost picture perfect. The images are beautiful. It’s a real success story for NASA," he says.


Terry Devitt, (608) 262-8282, trdevitt@wisc.edu

CONTACT: Ed Churchwell, (608) 262-4909, churchwell@astro.wisc.edu; Barbara Whitney, (608) 263-0807, bwhitney@wisc.edu

Terry Devitt | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>