Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LPL Scientists Take New Pictures of Saturn with Hubble And Cassini

26.05.2004


As the Cassini spacecraft hurtles toward a rendezvous with Saturn on June 30 (July 1, Universal Time), both Cassini and the Earth-orbiting Hubble Space Telescope snapped spectacular pictures of the planet and its magnificent rings.

Cassini is approaching Saturn at an oblique angle to the sun and from below the ecliptic plane. Cassini has a very different view of Saturn than Hubble’s Earth-centered view. For the first time, astronomers can compare equally sharp views of Saturn from two very different perspectives.

Erich Karkoschka of the University of Arizona’s Lunar and Planetary Laboratory took Hubble’s latest view of Saturn on March 22, 2004. The picture is so sharp that many individual ringlets can be seen in the planet’s ring plane. Electronic image files and additional information are online at http://hubblesite.org/news/2004/18.



When Cassini returned its picture of Saturn on May 16, it was so close to the planet that the Imaging Science Subsystem (ISS) narrow-angle camera could not fit the whole planet in its field-of-view. Cassini is still about 20 million kilometers (about 12.4 million miles) away and only 36 days from reaching Saturn.

Starting this week, the Cassini Imaging Team will be releasing more new views of the ringed planet on the Cassini Imaging Team website at http://ciclops.org, said ISS team leader Carolyn Porco of the Space Science Institute in Boulder. Porco is an adjunct professor at UA. UA Professor Alfred McEwen is a member of the ISS team.

Hubble’s exquisite optics, coupled with the high resolution of its Advanced Camera for Surveys (ACS), allow it to take pictures of Saturn which are nearly as sharp as Cassini’s, even though Hubble is nearly a billion miles farther from Saturn than Cassini is. Cassini will ultimately far exceed the resolution of Hubble during its close encounter with Saturn. Cassini’s images grew sharper than Hubble’s when the spacecraft came to within 23 million kilometers (14 million miles) of Saturn earlier this month.

Karkoschka combined camera exposures in four filters (blue, blue-green, green, and red) into Hubble’s new Saturn image. "This renders colors similar to what an astronaut would see if it were possible to watch Saturn through the Hubble Space Telescope," he said.

The subtle pastel colors of ammonia-methane clouds trace a variety of atmospheric dynamics. Saturn displays its familiar banded structure, and haze and clouds of various altitudes. Like Jupiter, all bands are parallel to Saturn’s equator. Even the magnificent rings, at nearly their maximum tilt toward Earth, show subtle hues, which suggest the trace chemical differences in their icy composition.

Cassini has two cameras, a wide angle and a narrow angle. The narrow angle image taken May 16, when the spacecraft was 24.3 million kilometers (15.1 million miles) from Saturn, was made using a combination of red, green and blue filters. The view is from 13 degrees below the equator. Enceladus, one of Saturn’s 31 known moons, appears near the south pole at the bottom of the image.

The differences between the Hubble and Cassini images are mainly due to the different sets of filters used.

The last spacecraft to visit Saturn was NASA’s Voyager-2 space probe that flew by the planet in August 1981. (Former UA planetary sciences Professor Bradford Smith headed the Voyager imaging team.) Since 1990, Hubble has produced high-resolution Saturn images, tracking storms and auroral activity while providing crisp views of the rings over time and from various angles.

Cassini will begin a four-year mission in orbit around Saturn when it arrives on June 30, 2004 PDT (July 1, 2004 UTC). Six months later it will release its piggybacked Huygens probe for descent through Titan’s thick atmosphere.

Martin Tomasko of UA’s Lunar and Planetary Lab leads the Descent Imager Spectral Radiometer (DISR) experiment that will take data during the probe’s two-or-more-hour descent through Titan’s atmosphere. Karkoschka is a member of the DISR science team.

The University of Arizona has more planetary scientists and students involved in the Cassini-Huygens mission than any other university. They are:
  • Robert H. Brown, team leader for the Visual and Infrared Mapping Spectrometer (VIMS)
  • Caitlin Griffith, member of the VIMS science team
  • Jonathan I. Lunine, one of three interdisciplinary scientists for Cassini’s Huygens probe
  • Elizabeth Turtle and Doug Dawson, who work with Cassini imaging team scientist Alfred McEwen in planning the observations of Titan
  • Martin Tomasko, principal investigator for the Descent Imager/Spectral Radiometer (DISR) that will be deployed to the surface of Titan on the Huygens probe
  • Peter Smith, co-investigator on DISR
  • Ralph Lorenz, member of the Cassini Radar Team and co-investigator on the Surface Science Package on the Huygens probe
  • Donald Hunten, co-investigator on the Gas Chromatograph and Mass Spectrometer on the Huygens probe
  • Roger Yelle, team member for the Ion Neutron Mass Spectrometer

The Hubble Space Telescope is an international project between NASA and the European Space Agency (ESA). The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md.

The Cassini/Huygens mission is a joint mission of NASA, ESA, and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Office of Space Science, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL.

Lori Stiles | University of Arizona
Further information:
http://uanews.org
http://hubblesite.org/news/2004/18
http://ciclops.org

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>