Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LPL Scientists Take New Pictures of Saturn with Hubble And Cassini

26.05.2004


As the Cassini spacecraft hurtles toward a rendezvous with Saturn on June 30 (July 1, Universal Time), both Cassini and the Earth-orbiting Hubble Space Telescope snapped spectacular pictures of the planet and its magnificent rings.

Cassini is approaching Saturn at an oblique angle to the sun and from below the ecliptic plane. Cassini has a very different view of Saturn than Hubble’s Earth-centered view. For the first time, astronomers can compare equally sharp views of Saturn from two very different perspectives.

Erich Karkoschka of the University of Arizona’s Lunar and Planetary Laboratory took Hubble’s latest view of Saturn on March 22, 2004. The picture is so sharp that many individual ringlets can be seen in the planet’s ring plane. Electronic image files and additional information are online at http://hubblesite.org/news/2004/18.



When Cassini returned its picture of Saturn on May 16, it was so close to the planet that the Imaging Science Subsystem (ISS) narrow-angle camera could not fit the whole planet in its field-of-view. Cassini is still about 20 million kilometers (about 12.4 million miles) away and only 36 days from reaching Saturn.

Starting this week, the Cassini Imaging Team will be releasing more new views of the ringed planet on the Cassini Imaging Team website at http://ciclops.org, said ISS team leader Carolyn Porco of the Space Science Institute in Boulder. Porco is an adjunct professor at UA. UA Professor Alfred McEwen is a member of the ISS team.

Hubble’s exquisite optics, coupled with the high resolution of its Advanced Camera for Surveys (ACS), allow it to take pictures of Saturn which are nearly as sharp as Cassini’s, even though Hubble is nearly a billion miles farther from Saturn than Cassini is. Cassini will ultimately far exceed the resolution of Hubble during its close encounter with Saturn. Cassini’s images grew sharper than Hubble’s when the spacecraft came to within 23 million kilometers (14 million miles) of Saturn earlier this month.

Karkoschka combined camera exposures in four filters (blue, blue-green, green, and red) into Hubble’s new Saturn image. "This renders colors similar to what an astronaut would see if it were possible to watch Saturn through the Hubble Space Telescope," he said.

The subtle pastel colors of ammonia-methane clouds trace a variety of atmospheric dynamics. Saturn displays its familiar banded structure, and haze and clouds of various altitudes. Like Jupiter, all bands are parallel to Saturn’s equator. Even the magnificent rings, at nearly their maximum tilt toward Earth, show subtle hues, which suggest the trace chemical differences in their icy composition.

Cassini has two cameras, a wide angle and a narrow angle. The narrow angle image taken May 16, when the spacecraft was 24.3 million kilometers (15.1 million miles) from Saturn, was made using a combination of red, green and blue filters. The view is from 13 degrees below the equator. Enceladus, one of Saturn’s 31 known moons, appears near the south pole at the bottom of the image.

The differences between the Hubble and Cassini images are mainly due to the different sets of filters used.

The last spacecraft to visit Saturn was NASA’s Voyager-2 space probe that flew by the planet in August 1981. (Former UA planetary sciences Professor Bradford Smith headed the Voyager imaging team.) Since 1990, Hubble has produced high-resolution Saturn images, tracking storms and auroral activity while providing crisp views of the rings over time and from various angles.

Cassini will begin a four-year mission in orbit around Saturn when it arrives on June 30, 2004 PDT (July 1, 2004 UTC). Six months later it will release its piggybacked Huygens probe for descent through Titan’s thick atmosphere.

Martin Tomasko of UA’s Lunar and Planetary Lab leads the Descent Imager Spectral Radiometer (DISR) experiment that will take data during the probe’s two-or-more-hour descent through Titan’s atmosphere. Karkoschka is a member of the DISR science team.

The University of Arizona has more planetary scientists and students involved in the Cassini-Huygens mission than any other university. They are:
  • Robert H. Brown, team leader for the Visual and Infrared Mapping Spectrometer (VIMS)
  • Caitlin Griffith, member of the VIMS science team
  • Jonathan I. Lunine, one of three interdisciplinary scientists for Cassini’s Huygens probe
  • Elizabeth Turtle and Doug Dawson, who work with Cassini imaging team scientist Alfred McEwen in planning the observations of Titan
  • Martin Tomasko, principal investigator for the Descent Imager/Spectral Radiometer (DISR) that will be deployed to the surface of Titan on the Huygens probe
  • Peter Smith, co-investigator on DISR
  • Ralph Lorenz, member of the Cassini Radar Team and co-investigator on the Surface Science Package on the Huygens probe
  • Donald Hunten, co-investigator on the Gas Chromatograph and Mass Spectrometer on the Huygens probe
  • Roger Yelle, team member for the Ion Neutron Mass Spectrometer

The Hubble Space Telescope is an international project between NASA and the European Space Agency (ESA). The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md.

The Cassini/Huygens mission is a joint mission of NASA, ESA, and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Office of Space Science, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL.

Lori Stiles | University of Arizona
Further information:
http://uanews.org
http://hubblesite.org/news/2004/18
http://ciclops.org

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>