Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find nearest, youngest star with dusty debris disk. But are there planets?

27.02.2004


Astronomers at the University of California, Berkeley, have discovered the nearest and youngest star with a visible disk of dust that may be a nursery for planets.



The dim red dwarf star is a mere 33 light years away, close enough that the Hubble Space Telescope or ground-based telescopes with adaptive optics to sharpen the image should be able to see whether the dust disk contains clumps of matter that might turn into planets.

"Circumstellar disks are signposts for planet formation, and this is the nearest and youngest star where we directly observe light reflected from the dust produced by extrasolar comets and asteroids - i.e., the objects that could possibly form planets by accretion," said Paul Kalas, assistant research astronomer at UC Berkeley and lead author of a paper reporting the discovery.


"We’re waiting for the summer and fall observing season to go back to the telescopes and study the properties of the disk in greater detail. But we expect everyone else to do the same thing - there will be lots of follow-up."

A paper announcing the discovery will be published online in Science Express this week, and will appear in the printed edition of the journal in March. Coauthors with Kalas are Brenda C. Matthews, a post-doctoral researcher with UC Berkeley’s Radio Astronomy Laboratory, and astronomer Michael C. Liu of the University of Hawaii. Kalas also is affiliated with the Center for Adaptive Optics at UC Santa Cruz.

The young M-type star, AU Microscopium (AU Mic), is about half the mass of the sun but only about 12 million years old, compared to the 4.6 billion year age of the sun. The team of astronomers found the star while searching for dust disks around stars emitting more than expected amounts of infrared radiation, indicative of a warm, glowing dust cloud.

The image of AU Mic, obtained last October with the University of Hawaii’s 2.2-meter telescope atop Mauna Kea, shows an edge-on disk of dust stretching about 210 astronomical units from the central star - about seven times farther from the star than Neptune is from the sun. One astronomical unit, or AU, is the average distance from the Earth to the sun, about 93 million miles.

"When we see scattered infrared light around a star, the inference is that this is caused by dust grains replenished by comets and asteroid collisions," Kalas said. Because 85 percent of all stars are M-type red dwarfs, the star provides clues to how the majority of planetary systems form and evolve.

Other nearby stars, such as Gliese 876 at 16 light years and epsilon-Eridani at 10 light years, wobble, providing indirect evidence for planets. But images of debris disks around stars are rare. AU Mic is the closest dust disk directly imaged since the discovery 20 years ago of a dust disk around beta-Pictoris, a star about 2.5 times the mass of the sun and 65 light years away. Though the two stars are in opposite regions of the sky, they appear to have been formed at the same time and to be traveling together through the galaxy, Kalas said.

"These sister stars probably formed together in the same region of space in a moving group containing about 20 stars," Kalas said. This represents an unprecedented opportunity to study stars formed under the same conditions, but of masses slightly larger and slightly smaller than the sun.

"Theorists are excited, too, at the opportunity to understand how planetary systems evolve differently around high-mass stars like beta-Pictoris and low-mass stars like AU Mic," he said.

The pictures of AU Mic were obtained by blocking glare from the star with a coronagraph like that used to view the sun’s outer atmosphere, or corona. The eclipsing disk on the University of Hawaii’s 2.2-metertelescope blocked view of everything around the star out to about 50 AU. At this distance in our solar system, only the Kuiper Belt of asteroids and the more distant Oort cloud, the source of comets, would be visible.

Kalas said that sharper images from the ground or space should show structures as close as 5 AU, which means a Jupiter-like planet or lump in the dusty disk would be visible, if present.

"With the adaptive optics on the Lick 120-inch telescope or the Keck 10-meter telescopes, or with the Hubble Space Telescope, we can improve the sharpness by 10 to 100 times," Kalas said.

In a companion paper accepted for publication in The Astrophysical Journal, the Berkeley-Hawaii team reports indirect evidence for a relatively dust-free hole within about 17 AU of the star. This would be slightly inside the orbit of Uranus in our own solar system.

"Potential evidence for the existence of planets comes from the infrared spectrum, where we notice an absence of warm dust grains," he said. "That means that grains are depleted within about 17 AU radius from the star. One mechanism to clear out the dust disk within 17 AU radius is by planet-grain encounters, where the planet removes the grains from the system."

"The dust missing from the inner regions of AU Mic is the telltale sign of an orbiting planet. The planet sweeps away any dust in the inner regions, keeping the dust in the outer region at bay," said Liu. Aside from further observations with the 2.2-meter telescope in Hawaii, Kalas and his colleagues plan to use the Spitzer Space Telescope, an infrared observatory launched last August by the National Aeronautics and Space Administration (NASA), to conduct a more sensitive search for gas.


The research was supported by the NASA Origins Program and the National Science Foundation’s Center for Adaptive Optics.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>