Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Etching holes in vertical-cavity surface-emitting lasers creates better beam

11.02.2004


Researchers at the University of Illinois at Urbana-Champaign have found a way to significantly improve the performance of vertical-cavity surface-emitting lasers by drilling holes in their surfaces. Faster and cheaper long-haul optical communication systems, as well as photonic integrated circuits, could be the result.



Low-cost VCSELs are currently used in data communication applications where beam quality is of little importance. To operate at higher speeds and over longer distances, the devices must function in a single transverse mode with a carefully controlled beam.

"These characteristics are normally found only in very expensive lasers, not in mass-produced VCSELs," said Kent D. Choquette, an Illinois professor of electrical and computer engineering and a researcher at the university’s Micro and Nanotechnology Laboratory. "By embedding a two-dimensional photonic crystal into the top face of a VCSEL, however, we can accurately design and control the device’s mode characteristics."


Choquette and his colleagues -- Illinois graduate students Aaron J. Danner and James J. Raftery Jr., and scientist Noriyuki Yokouchi at the Furukawa Electric Co. in Yokohama, Japan -- will report their findings in the Feb. 16 issue of the journal Applied Physics Letters.

The two-dimensional photonic crystal, created by drilling holes in the semiconductor surface, introduces a periodic change in the index of refraction, Choquette said. The holes represent regions of low refractive index, surrounded by semiconductor material where the index is higher. A particular combination of refractive indices will produce a single-mode waveguide that permits only one transverse wave of the laser beam to propagate.

"Our photonic crystal consists of a triangular array of circular holes that have been etched into the top of a VCSEL," Choquette said. "Because the index variation has to be on the length scale of light, the periodicity of the holes must be on the order of several hundred nanometers."

To create such a precise array of holes, the researchers first lithographically define the desired pattern into a silicon dioxide mask layer on the semiconductor surface using focused-ion beam etching. The holes are then bored into the semiconductor material using inductively coupled plasma etching.

"By selectively varying parameters such as depth, diameter and spacing of the holes, we can control the modal characteristics of the laser," Choquette said. "This means we can accurately design and fabricate single-mode VCSELs for high-performance optical communication systems."

The next step, he said, is to push VCSEL performance toward higher power by considering designs that are much larger in diameter.

"Looking beyond that, we also have fundamental problems with high-speed data communication on our circuit boards and in our chips," Choquette said. "This is a technology that could serve as the foundation for a new way of looking at optical interconnects and photonic integrated circuits."


###
The National Science Foundation and Defense Advanced Research Projects Agency funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0210crystals.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>