Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Etching holes in vertical-cavity surface-emitting lasers creates better beam

11.02.2004


Researchers at the University of Illinois at Urbana-Champaign have found a way to significantly improve the performance of vertical-cavity surface-emitting lasers by drilling holes in their surfaces. Faster and cheaper long-haul optical communication systems, as well as photonic integrated circuits, could be the result.



Low-cost VCSELs are currently used in data communication applications where beam quality is of little importance. To operate at higher speeds and over longer distances, the devices must function in a single transverse mode with a carefully controlled beam.

"These characteristics are normally found only in very expensive lasers, not in mass-produced VCSELs," said Kent D. Choquette, an Illinois professor of electrical and computer engineering and a researcher at the university’s Micro and Nanotechnology Laboratory. "By embedding a two-dimensional photonic crystal into the top face of a VCSEL, however, we can accurately design and control the device’s mode characteristics."


Choquette and his colleagues -- Illinois graduate students Aaron J. Danner and James J. Raftery Jr., and scientist Noriyuki Yokouchi at the Furukawa Electric Co. in Yokohama, Japan -- will report their findings in the Feb. 16 issue of the journal Applied Physics Letters.

The two-dimensional photonic crystal, created by drilling holes in the semiconductor surface, introduces a periodic change in the index of refraction, Choquette said. The holes represent regions of low refractive index, surrounded by semiconductor material where the index is higher. A particular combination of refractive indices will produce a single-mode waveguide that permits only one transverse wave of the laser beam to propagate.

"Our photonic crystal consists of a triangular array of circular holes that have been etched into the top of a VCSEL," Choquette said. "Because the index variation has to be on the length scale of light, the periodicity of the holes must be on the order of several hundred nanometers."

To create such a precise array of holes, the researchers first lithographically define the desired pattern into a silicon dioxide mask layer on the semiconductor surface using focused-ion beam etching. The holes are then bored into the semiconductor material using inductively coupled plasma etching.

"By selectively varying parameters such as depth, diameter and spacing of the holes, we can control the modal characteristics of the laser," Choquette said. "This means we can accurately design and fabricate single-mode VCSELs for high-performance optical communication systems."

The next step, he said, is to push VCSEL performance toward higher power by considering designs that are much larger in diameter.

"Looking beyond that, we also have fundamental problems with high-speed data communication on our circuit boards and in our chips," Choquette said. "This is a technology that could serve as the foundation for a new way of looking at optical interconnects and photonic integrated circuits."


###
The National Science Foundation and Defense Advanced Research Projects Agency funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0210crystals.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>