Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Etching holes in vertical-cavity surface-emitting lasers creates better beam

11.02.2004


Researchers at the University of Illinois at Urbana-Champaign have found a way to significantly improve the performance of vertical-cavity surface-emitting lasers by drilling holes in their surfaces. Faster and cheaper long-haul optical communication systems, as well as photonic integrated circuits, could be the result.



Low-cost VCSELs are currently used in data communication applications where beam quality is of little importance. To operate at higher speeds and over longer distances, the devices must function in a single transverse mode with a carefully controlled beam.

"These characteristics are normally found only in very expensive lasers, not in mass-produced VCSELs," said Kent D. Choquette, an Illinois professor of electrical and computer engineering and a researcher at the university’s Micro and Nanotechnology Laboratory. "By embedding a two-dimensional photonic crystal into the top face of a VCSEL, however, we can accurately design and control the device’s mode characteristics."


Choquette and his colleagues -- Illinois graduate students Aaron J. Danner and James J. Raftery Jr., and scientist Noriyuki Yokouchi at the Furukawa Electric Co. in Yokohama, Japan -- will report their findings in the Feb. 16 issue of the journal Applied Physics Letters.

The two-dimensional photonic crystal, created by drilling holes in the semiconductor surface, introduces a periodic change in the index of refraction, Choquette said. The holes represent regions of low refractive index, surrounded by semiconductor material where the index is higher. A particular combination of refractive indices will produce a single-mode waveguide that permits only one transverse wave of the laser beam to propagate.

"Our photonic crystal consists of a triangular array of circular holes that have been etched into the top of a VCSEL," Choquette said. "Because the index variation has to be on the length scale of light, the periodicity of the holes must be on the order of several hundred nanometers."

To create such a precise array of holes, the researchers first lithographically define the desired pattern into a silicon dioxide mask layer on the semiconductor surface using focused-ion beam etching. The holes are then bored into the semiconductor material using inductively coupled plasma etching.

"By selectively varying parameters such as depth, diameter and spacing of the holes, we can control the modal characteristics of the laser," Choquette said. "This means we can accurately design and fabricate single-mode VCSELs for high-performance optical communication systems."

The next step, he said, is to push VCSEL performance toward higher power by considering designs that are much larger in diameter.

"Looking beyond that, we also have fundamental problems with high-speed data communication on our circuit boards and in our chips," Choquette said. "This is a technology that could serve as the foundation for a new way of looking at optical interconnects and photonic integrated circuits."


###
The National Science Foundation and Defense Advanced Research Projects Agency funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0210crystals.html

More articles from Physics and Astronomy:

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>