Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploration of Saturn’s rings aided by UK scientists

20.01.2004


Scientists at the University of Sussex have produced synthetic ‘cosmic dust’ to help space researchers understand information gathered by a mission to Saturn.



CASSINI, an unmanned probe launched by NASA in October 1997, is due to go into orbit around Saturn this summer. One of the aims of the CASSINI mission is to study the planet’s famous rings. It is already recognised Saturn’s rings are made of cosmic dust, but very little is known about the composition of the dust.

Cosmic dust moves at speeds of up to 70,000 mph. When dust from Saturn’s rings hits CASSINI’s onboard detector, it will be obliterated in the collision. CASSINI will record data generated from dust impacts for transmission back to Earth.


The University of Sussex team’s plastic ‘cosmic dust’ particles are being used in related experiments on Earth. The new particles, just a thousandth of a millimetre in size, are being tested by a second group of scientists, led by Dr Mark Burchell, at the University of Kent. The aim is to ensure that CASSINI’s data are properly understood by comparison with laboratory-based experiments using various synthetic dusts of known compositions.

Lead scientist for the Sussex chemists, Professor Steve Armes, said: “After several centuries of speculation, we may finally find out what Saturn’s rings are made from.”

The key development is the ability to make the synthetic dust electrically conductive. The equipment used to accelerate synthetic dust in the laboratory only works when the dust is electrically conductive. Before the invention of the conductive Sussex particles, scientists were limited to tests using iron particles for the study of metallic cosmic dust. It was impossible to investigate the three other known types of cosmic dust found in outer space because the constituent materials - carbon, ice or silicate - are electrical insulators.

Professor Armes explained the breakthrough. He said: “We took electrically insulating plastic particles and coated them with a second plastic called polypyrrole to produce the synthetic dust. Unlike most plastics, polypyrrole is electrically conductive. This conductive coating allows our synthetic dust to be accelerated to the same speeds as cosmic dust. The new synthetic dust contains more than 90 per cent carbon, so their composition is ideal for understanding the behaviour of the organic cosmic dust found in outer space. We have also made good synthetic mimics for the silicate-based cosmic dust.”

Alix Macfarlane | alfa
Further information:
http://www.sussex.ac.uk/press_office/media/media375.shtml

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>