Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploration of Saturn’s rings aided by UK scientists

20.01.2004


Scientists at the University of Sussex have produced synthetic ‘cosmic dust’ to help space researchers understand information gathered by a mission to Saturn.



CASSINI, an unmanned probe launched by NASA in October 1997, is due to go into orbit around Saturn this summer. One of the aims of the CASSINI mission is to study the planet’s famous rings. It is already recognised Saturn’s rings are made of cosmic dust, but very little is known about the composition of the dust.

Cosmic dust moves at speeds of up to 70,000 mph. When dust from Saturn’s rings hits CASSINI’s onboard detector, it will be obliterated in the collision. CASSINI will record data generated from dust impacts for transmission back to Earth.


The University of Sussex team’s plastic ‘cosmic dust’ particles are being used in related experiments on Earth. The new particles, just a thousandth of a millimetre in size, are being tested by a second group of scientists, led by Dr Mark Burchell, at the University of Kent. The aim is to ensure that CASSINI’s data are properly understood by comparison with laboratory-based experiments using various synthetic dusts of known compositions.

Lead scientist for the Sussex chemists, Professor Steve Armes, said: “After several centuries of speculation, we may finally find out what Saturn’s rings are made from.”

The key development is the ability to make the synthetic dust electrically conductive. The equipment used to accelerate synthetic dust in the laboratory only works when the dust is electrically conductive. Before the invention of the conductive Sussex particles, scientists were limited to tests using iron particles for the study of metallic cosmic dust. It was impossible to investigate the three other known types of cosmic dust found in outer space because the constituent materials - carbon, ice or silicate - are electrical insulators.

Professor Armes explained the breakthrough. He said: “We took electrically insulating plastic particles and coated them with a second plastic called polypyrrole to produce the synthetic dust. Unlike most plastics, polypyrrole is electrically conductive. This conductive coating allows our synthetic dust to be accelerated to the same speeds as cosmic dust. The new synthetic dust contains more than 90 per cent carbon, so their composition is ideal for understanding the behaviour of the organic cosmic dust found in outer space. We have also made good synthetic mimics for the silicate-based cosmic dust.”

Alix Macfarlane | alfa
Further information:
http://www.sussex.ac.uk/press_office/media/media375.shtml

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>