Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smallest whirlpools can pack stunningly strong force

04.09.2003


Researchers studying physical and chemical processes at the smallest scales, smaller even than the width of a human hair, have found that fluid circulating in a microscopic whirlpool can reach radial acceleration more than a million times greater than gravity, or 1 million Gs.



By contrast, a pilot flying a fighter jet at high speed and in relatively tight circular patterns might experience a force of 10 to 12 Gs, making the force his body feels 10 to 12 times normal.

"From a physical perspective, it’s not so surprising since the number of Gs goes up with an increase in velocity and the reduction in radius," said Daniel Chiu, a University of Washington assistant chemistry professor in whose laboratory the research was conducted.


What was surprising is just how much acceleration was achieved when the radius of the vortex – the tight circular pattern in which tiny molecules were flying – was reduced to such minute scales.

In this case, a tiny chamber one-third to one-half the width of a human hair was used to create a vortex in which less than a billionth of a liter of water reached an acceleration of more than 1 million Gs. The force was so strong that polystyrene beads a micron (1 millionth of a meter) in size, which the scientists were using to help visualize the flow of water, completely separated from the liquid in the vortex.

The finding by Chiu, doctoral student J. Patrick Shelby and research associates David Lim and Jason Kuo appears in the Sept. 4 edition of the journal Nature.

"It’s just something neat that we stumbled upon," Chiu said. "You have a tiny volume of fluid and it is zipping around very rapidly."

The work, paid for by a grant from the National Science Foundation, could have future effects, as scientists and engineers explore microfluidics for a variety of applications. For instance, some researchers foresee a time when microfluidic systems can be used anywhere for quick analysis of biological samples. Some envision that a credit card-sized device with a microscopic needle could be applied painlessly to the body to obtain a particular sample, such as blood, and then microfluidic systems embedded in the card could profile the biochemical composition of the minute sample. That could mean a sick person in a remote location could receive a diagnosis in hours rather than waiting for days or weeks for samples to be sent to laboratories.

Chiu notes that there are large, high-powered commercial and government centrifuges that can achieve acceleration of several hundred thousand Gs, some possibly even exceeding 1 million. Materials that most humans are familiar with would be altered significantly or destroyed if exposed to such forces.

But that might or might not hold true at microscopic scales, Chiu said.

"The force would feel very small to us because the mass is so small at this microscopic scale, even though the acceleration is very high," he said. "But if you had humans living at that microscale, to them I imagine the force would feel very large."


For more information, contact Chiu at 206-543-1655 or chiu@chem.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>