Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB Scientists break the hard drive miniaturisation limit

10.07.2003


Magnetic memory-based information storage systems are getting smaller and smaller, while their capacities are getting larger. However, there is a limit to how small they can get. If the tiny magnets used to store information are smaller than around five nanometres (millionths of a millimetre), vibrations caused by temperature can erase their orientation and, therefore, the information they contain. This is known as the superparamagnetic limit, which physically limits the capacity of magnetic storage systems to some 100 Gbit/in2.



An international team of scientists, which included ICREA researcher Josep Nogués of the UAB’s Physics Department, has discovered a way of breaking that limit. The researchers have discovered that it is possible to attain extra stability of the magnetic nanoparticles that store information if they are anchored to a matrix with particular magnetic properties (antiferromagnetic matrix). The discovery opens new horizons for magnetic storage technologies, the miniaturisation of such common items as computer hard drives and improvements of other magnetic systems.

The scientists made the discovery using a system made up of cobalt particles of between 3 and 4 nanometres. When these particles are distributed in a matrix similar to one normally used as a base for magnetic particles, their capacity to store information is lost when the temperature rises. However, the same particles are much more resistant to the effects of temperature if they are distributed in a matrix with antiferromagnetic properties.


The researchers have already contacted the Seagate Technology Company, which manufactures magnetic computer memories, to evaluate the application of this research to the miniaturisation of IT components



Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>